1
|
Das SK, Joshi A, Bisht L, Goswami V, Faiz A, Dutt G, Sharma S. Godanti bhasma (anhydrous CaSO 4) induces massive cytoplasmic vacuolation in mammalian cells: A model for phagocytosis assay. Methods 2024; 230:158-168. [PMID: 39216714 DOI: 10.1016/j.ymeth.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Phagocytosis is an essential physiological mechanism; its impairment is associated with many diseases. A highly smart particle is required for understanding detailed sequential cellular events in phagocytosis. Recently, we identified an Indian traditional medicine named Godanti Bhasma (GB), a bioactive calcium sulfate particle prepared by thermo-transformation ofgypsum. Thermal processing of the gypsum transforms its native physicochemical properties by removing water molecules into the anhydrous GB, which was confirmed by Raman and FT-IR spectroscopy. GB particle showed a 0.5-5 µm size range and a neutral surface charge. Exposure of mammalian cells to GB particles showed a rapid cellular uptake through phagocytosis and induced massive cytoplasmic vacuolation in cells. Interestingly, no cellular uptake and cytoplasmic vacuolation were observed with the parent gypsum particle. The presence of the GB particles in intra-vacuolar space was confirmed using FESEM coupled with EDX. Flow cytometry analysis and live tracking of GB-treated cells showed particle internalization, vacuole formation, particle dissolution, and later vacuolar turnover. Quantification of GB-induced vacuolation was done using neutral red uptake assay in cells. Treatment of lysosomal inhibitors (BFA1 or CQ) with GB could not induce vacuolation, suggesting the requirement of an acidic environment for the vacuolation. In the mimicking experiment, GB particle dissolution in acidic cell-free solution suggested that degradation of GB occurs by acidic pH inside the cell vacuole. Vacuole formation generally accompanies with cell death, whereas GB-induced massive vacuolation does not cause cell death. Moreover, the cell divides and proliferates with the vacuolar process, intra-vacuolar cargo degradation, and eventually vacuolar turnover. Taken together, the sequential cellular events in this study suggest that GB can be used as a smart particle for phagocytosis assay development in animal cells.
Collapse
Affiliation(s)
- Subrata K Das
- Shobhit Institute of Engineering & Technology, University, NH 58, Meerut 250110, India; Drug Discovery and Development Division, Patanjali Research Institute, Haridwar 249405, Uttarakhand, India.
| | - Alpana Joshi
- Shobhit Institute of Engineering & Technology, University, NH 58, Meerut 250110, India; Drug Discovery and Development Division, Patanjali Research Institute, Haridwar 249405, Uttarakhand, India
| | - Laxmi Bisht
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar 249405, Uttarakhand, India
| | - Vishakha Goswami
- Shobhit Institute of Engineering & Technology, University, NH 58, Meerut 250110, India
| | - Abul Faiz
- Shobhit Institute of Engineering & Technology, University, NH 58, Meerut 250110, India
| | - Gaurav Dutt
- Shobhit Institute of Engineering & Technology, University, NH 58, Meerut 250110, India
| | - Shiva Sharma
- Shobhit Institute of Engineering & Technology, University, NH 58, Meerut 250110, India
| |
Collapse
|
2
|
Araújo RPN, da Silva Freitas FV, Nunes DB, da Silva Brito AK, da Costa DS, de Sousa DP, de Cássia Meneses Oliveira R, Dos Santos RF. Investigating the pharmacological potential of phytol on experimental models of gastric ulcer in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7757-7766. [PMID: 38717706 DOI: 10.1007/s00210-024-03085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/04/2024] [Indexed: 10/04/2024]
Abstract
Phytol is a diterpene constituent of many essential oils, belonging to the group of unsaturated acyclic alcohols. Although phytol possesses antimycobacterial and anti-inflammatory effects, no reports of a gastrointestinal action are available from the literature. Due to the well-known shortcomings of classical anti-ulcer drugs (e.g. side effects or relapses), natural products may offer an attractive alternative. In this study, a potential gastroprotective activity of phytol was evaluated using acute and chronic ulcer models in rats. Phytol 12.5, 25 and 50 mg/kg, administered orally 1 h prior to induction of gastric lesions by absolute ethanol, inhibited the lesion area by 96, 90 and 95%, respectively. When lesions were induced by ischemia and reperfusion, phytol 12.5 and 25 mg/kg per os decreased the lesion areas by 89 and 46%, respectively. In the third acute ulcer model (lesions induced by ibuprofen), phytol 12.5 mg/kg reduced the lesion area by 55%. Phytol restored the decreased level of reduced glutathione, the increased levels of myeloperoxidase and malondialdehyde and the decreased levels of catalase and superoxide dismutase in rats with gastric ulcer induced by ethanol to levels obtained in vehicle group. Finally, in a chronic model in which gastric ulcer was induced by acetic acid directly instilled into the stomach, phytol administered orally over a time period of 7 days at 12.5, 25, 50 and 100 mg/kg reduced lesion areas by 84, 81, 83 and 68%. Our data suggest a gastroprotective and cicatrizing effect of phytol, possibly associated with its antioxidant effect.
Collapse
Affiliation(s)
- Ruan Pablo Nunes Araújo
- Medicinal Plants Research Center, Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Piauí, Nossa Sra. de Fátima Avenue - Fátima, Teresina, Piauí, CEP 64049-550, Brazil
| | - Francilene Vieira da Silva Freitas
- Medicinal Plants Research Center, Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Piauí, Nossa Sra. de Fátima Avenue - Fátima, Teresina, Piauí, CEP 64049-550, Brazil
| | - Daniel Barbosa Nunes
- Medicinal Plants Research Center, Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Piauí, Nossa Sra. de Fátima Avenue - Fátima, Teresina, Piauí, CEP 64049-550, Brazil
| | - Ana Karoline da Silva Brito
- Medicinal Plants Research Center, Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Piauí, Nossa Sra. de Fátima Avenue - Fátima, Teresina, Piauí, CEP 64049-550, Brazil
| | - Douglas Soares da Costa
- Medicinal Plants Research Center, Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Piauí, Nossa Sra. de Fátima Avenue - Fátima, Teresina, Piauí, CEP 64049-550, Brazil
| | - Damião Pergentino de Sousa
- Pharmaceutical Sciences Department, Federal University of Paraíba, Campus I Lot. Cidade Universitaria, João Pessoa, Paraíba, CEP 58051-900, Brazil
| | - Rita de Cássia Meneses Oliveira
- Medicinal Plants Research Center, Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Piauí, Nossa Sra. de Fátima Avenue - Fátima, Teresina, Piauí, CEP 64049-550, Brazil.
| | - Rosimeire Ferreira Dos Santos
- Medicinal Plants Research Center, Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Piauí, Nossa Sra. de Fátima Avenue - Fátima, Teresina, Piauí, CEP 64049-550, Brazil
| |
Collapse
|
3
|
Awote OK, Kanmodi RI, Ebube SC, Abdulganniyyu ZF. Nutritional Profile, GC-MS Analysis and In-silico Anti-diabetic Phytocompounds Candidature of Jatropha gossypifolia Leaf Extracts. Curr Drug Discov Technol 2024; 21:32-45. [PMID: 37817655 DOI: 10.2174/0115701638267143230925172207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Diabetes mellitus (DM) is a metabolic disorder known to impair many physiological functions via reactive oxygen species (ROS). Aldose reductase, sorbitol dehydrogenase, dipeptidyl peptidase IV, α-amylase and α-glucosidase are pharmacotherapeutic protein targets in type-2 diabetes mellitus (T2DM). Inhibitors of these enzymes constitute a new class of drugs used in the management and treatment of T2DM. Some reports have claimed that medicinal plant extracts that serves as food (and as an antioxidant source) can reduce these alterations by eliminating ROS caused by DM. Ethnobotanical survey claims Jatropha gossypifolia commonly called "fignut" and "Lapa-lapa" in the Yoruba land of South-western Nigeria, to be used for the treatment and management of diabetes, in addition to its nutritive value. OBJECTIVE The nutritional composition and in-silico antidiabetic potential of the bioactive constituents of J. gossypifolia leaf extracts were investigated. METHODS Proximate, minerals and gas chromatography-mass spectroscopy (GC-MS) analysis were carried out using standard procedures. Phytocompounds present in J. gossypifolia methanol (JGM) and ethyl acetate (JGE) leaf extracts were tested as potential antagonists of selected protein targets via in-silico techniques. Drug-likeness, pharmacokinetic properties and toxicity of the promising docked ligands were also predicted. RESULTS The proximate and mineral analysis revealed good nutritional composition and mineral content. Additionally, cyclo-pentadecane and dibutyl phthalate from methanol extract, and benzene- 1,2,4,5-tetramethyl, benzene-1,2,3,5-tetramethyl, and benzene-1,3-dimethyl-5-(1-methylethyl) from ethyl acetate extract were present in J. gossypifolia leaf which exhibited a better binding affinity than the clinically prescribed standard, metformin. CONCLUSION Benzene-1,2,4,5-tetramethyl from JGE extracts exhibited the most promising antidiabetic potential in-silico, suggesting its candidature as diabetes-target-protein inhibitor which may be developed for the treatment of type-2 diabetes mellitus.
Collapse
Affiliation(s)
- Olasunkanmi Kayode Awote
- Department of Biochemistry, Faculty of Science, Lagos State University, Ojo, Lagos State, Nigeria
| | - Rahmon Ilesanmi Kanmodi
- Department of Biochemistry, Faculty of Science, Lagos State University, Ojo, Lagos State, Nigeria
| | - Success Chidera Ebube
- Department of Biochemistry, Faculty of Science, Lagos State University, Ojo, Lagos State, Nigeria
| | | |
Collapse
|
4
|
El-shafey RS, Baloza SH, Mohammed LA, Nasr HE, Soliman MM, Ghamry HI, Elgendy SA. The ameliorative impacts of wheat germ oil against ethanol-induced gastric ulcers: involvement of anti-inflammatory, antiapoptotic, and antioxidant activities. Toxicol Res (Camb) 2022; 11:325-338. [PMID: 35510233 PMCID: PMC9052321 DOI: 10.1093/toxres/tfac012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 03/08/2024] Open
Abstract
This study examined if wheat germ oil (WGO) has gastroprotective impacts against ethanol-induced gastric ulcer in rats. Rats were assigned into control, WGO, ethanol, omeprazole + ethanol, and WGO + ethanol. WGO prevented gastric ulceration and damage induced by ethanol, the same effect induced by omeprazole, a widely known medication used for gastric ulcer treatment. WGO reduced gastric ulcer index, nitric oxide, and malondialdehyde levels in the stomach. WGO boosted the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Bcl2, and the antioxidants. WGO showed inflammatory and anti-inflammatory impacts through the control of interleukin (IL)-1β, Tumor necrosis factor alpha (TNF-α), and IL-10 that were altered in ethanol-administered rats. Ethanol up-regulated caspase-3 and nuclear factor-kappa B (NF-kB) expression and showed histopathological changes such as necrosis and mucosal degeneration that were mitigated by pre-administration of WGO. Moreover, WGO decreased gastric immunoreactivity of NF-kB and increased transforming growth factor beta-1 (TGF-β1) that were associated with upregulation of Nrf2, heme oxygenase-1 (HO-1), and antioxidant expression and production. In conclusion, WGO reduced ethanol-induced stomach toxicity by regulating genes involved in oxidative stress, inflammation, and apoptotic/antiapoptotic pathways.
Collapse
Affiliation(s)
- Rabab Shaban El-shafey
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Samar H Baloza
- Genetic and Genetic Engineering, Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Lina Abdelhady Mohammed
- Department of Medical Biochemistry and Molecular Biology, College of Medicine, Benha University, Benha 13511, Egypt
| | - Hend Elsayed Nasr
- Department of Medical Biochemistry and Molecular Biology, College of Medicine, Benha University, Benha 13511, Egypt
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, PO Box 11099, Taif 21944, Taif, Saudi Arabia
| | - Heba I Ghamry
- Department of Home Economics, College of Home Economics, King Khalid University, P.O. Box 960, Abha,61421, Saudi Arabia
| | - Salwa A Elgendy
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13511, Egypt
| |
Collapse
|
5
|
Raish M, Shahid M, Bin Jardan YA, Ansari MA, Alkharfy KM, Ahad A, Abdelrahman IA, Ahmad A, Al-Jenoobi FI. Gastroprotective Effect of Sinapic Acid on Ethanol-Induced Gastric Ulcers in Rats: Involvement of Nrf2/HO-1 and NF-κB Signaling and Antiapoptotic Role. Front Pharmacol 2021; 12:622815. [PMID: 33716749 PMCID: PMC7946842 DOI: 10.3389/fphar.2021.622815] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Background: In the current study, we evaluated the therapeutic potential of sinapic acid (SA) in terms of the mechanism underlying its gastroprotective action against ethanol-induced gastric ulcers in rats. Methods: These effects were examined through gross macroscopic evaluation of the stomach cavity [gastric ulcer index (GUI)], alteration in pH, gastric juice volume, free acidity, total acidity, total gastric wall mucus, and changes in PGE2. In addition, we evaluated lipid peroxidation (malondialdehyde), antioxidant systems (catalase and glutathione), inflammatory markers [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and myeloperoxidase (MPO)], apoptotic markers (caspase-3, Bax, and Bcl-2), nuclear factor-κB [NF-κB (p65)], NO levels, and histopathological staining (H and E and PAS). Results: In rats with ethanol-induced ulcers, pre-treatment with SA (40 mg/kg p. o.) decreased the sternness of ethanol-induced gastric mucosal injuries by decreasing the GUI, gastric juice volume, free acidity, and total acidity. In addition, the pH and total gastric mucosa were increased, together with histopathological alteration, neutrophil incursion, and increases in PGE2 and NO2. These effects were similar to those observed for omeprazole, a standard anti-ulcer drug. SA was shown to suppress gastric inflammation through decreasing TNF-α, IL-6, and MPO, as well as curbing gastric oxidative stress through the inhibition of lipid peroxidation (MDA) and restoration of depleted glutathione and catalase activity. SA inhibited Bcl-2-associated X (Bax) and caspase-3 activity, and restored the antiapoptotic protein Bcl-2; these findings indicate the antiapoptotic potential of SA, leading to enhanced cell survival. SA also repressed NF-κB signaling and increased IκBα. Moreover, SA upregulated the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), thereby restoring depleted antioxidant defense enzymes and implicating the NRF2/HO-1 signaling pathways. Conclusion: These results suggest that the prophylactic administration of SA (40 mg/kg) can ameliorate ethanol-induced gastric ulcers in rats primarily via the modulation of Nrf2/HO-1 and NF-κB signaling and subsequent enhancement of cell viability.
Collapse
Affiliation(s)
- Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Coelho IP, Santos LBBD, Kato Junior WH, Corsino J, Cordeiro KW, Boeing T, Coelho JM, Garcez FR, Garcez WS, de Andrade SF, Figueiredo PDO. Chemical profile and gastroprotective effect of Jatropha elliptica (Pohl) Oken roots. Fitoterapia 2020; 146:104707. [PMID: 32827695 DOI: 10.1016/j.fitote.2020.104707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/03/2020] [Accepted: 08/16/2020] [Indexed: 02/08/2023]
Abstract
Jatropha elliptica (Pohl) Oken (Euphorbiaceae) roots are used in folk medicine to treat gastric ulcers. The purpose of this work was to evaluate the gastroprotective activity of ethanol extract (JER) and hexane fraction (ERH) of J. elliptica roots in mice, as well as to analyze the acute toxicity of the extract and identify the potential active compounds. No signs of toxicity were observed in JER. In both acidified ethanol and indometacin-induced gastric ulcer models, all doses tested of JER and ERH significantly reduced gastric lesions. Dereplication of JER was performed by HPLC-DAD-ESI-MS/MS and resulted in the annotation of compounds fraxetin, propacin, jatrophone and jatropholones A and B. GC-MS analysis of ERH revealed the diterpenes jatrophone, jatropholone A and jatropholone B as the major components. The chemical study of this fraction has led to the isolation of these compounds, in addition to the sequiterpene cyperenoic acid and the diterpene 2β-hydroxyjatrophone, both reported for the first time in J. elliptica. The isolated compounds were tested against L929 cells and only cyperenoic acid and the mixture of jatropholones A and B did not show toxicity, being then selected as good candidates for bioassays using acidified ethanol-induced gastric ulcer model. Cyperenoic acid significantly decreased gastric lesions and preserved gastric mucus layer. The mixture of jatropholones A and B caused a smaller reduction of gastric lesions, without preservation of the gastric mucus layer. The study showed that J. elliptica roots present gastroprotective activity in mice, without causing acute toxic effects. The activity is related, at least in part, to the occurrence of terpenes, mainly the sesquiterpene cyperenoic acid.
Collapse
Affiliation(s)
- Izabela Pereira Coelho
- Universidade Federal de Mato Grosso do Sul, Faculdade de Medicina, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Wilson Hino Kato Junior
- Universidade Federal de Mato Grosso do Sul, Instituto de Química, Campo Grande, Mato Grosso do Sul, Brazil
| | - Joaquim Corsino
- Universidade Federal de Mato Grosso do Sul, Instituto de Química, Campo Grande, Mato Grosso do Sul, Brazil
| | - Kátia Wolf Cordeiro
- Universidade Federal de Mato Grosso do Sul, Instituto de Química, Campo Grande, Mato Grosso do Sul, Brazil
| | - Thaise Boeing
- Universidade do Vale do Itajaí, Núcleo de Investigações Químico-Farmacêuticas, Itajaí, Santa Catarina, Brazil
| | - Julice Medeiros Coelho
- Universidade Federal de Mato Grosso do Sul, Faculdade de Medicina, Campo Grande, Mato Grosso do Sul, Brazil
| | - Fernanda Rodrigues Garcez
- Universidade Federal de Mato Grosso do Sul, Instituto de Química, Campo Grande, Mato Grosso do Sul, Brazil
| | - Walmir Silva Garcez
- Universidade Federal de Mato Grosso do Sul, Faculdade de Medicina, Campo Grande, Mato Grosso do Sul, Brazil; Universidade Federal de Mato Grosso do Sul, Instituto de Química, Campo Grande, Mato Grosso do Sul, Brazil
| | - Sérgio Faloni de Andrade
- Universidade do Vale do Itajaí, Núcleo de Investigações Químico-Farmacêuticas, Itajaí, Santa Catarina, Brazil; Universidade Lusófona CBIOS, Research Center for Biosciences and Health Technologies, Av. Campo Grande, 376, 1749-024 Lisboa, Portugal
| | | |
Collapse
|
7
|
Lee YC, Cheng CW, Lee HJ, Chu HC. Apple Polyphenol Suppresses Indomethacin-Induced Gastric Damage in Experimental Animals by Lowering Oxidative Stress Status and Modulating the MAPK Signaling Pathway. J Med Food 2018; 20:1113-1120. [PMID: 29120271 DOI: 10.1089/jmf.2017.3951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Indomethacin is a nonsteroid anti-inflammatory drug (NSAID) that is used to alleviate pain and inflammation in clinical medicine. Previous studies indicated that NSAIDs can cause gastrointestinal mucosal complications, and it is associated with mucosal lipid peroxidation and oxidative damage. Based on the evidences, decreasing oxidative stress may be an ideal therapeutic strategy for preventing gastrointestinal ulcer. Apple (Rosaceae Malus sp.) is one of the most commonly consumed fruits worldwide. The abundant polyphenolic constituents have received increasing attention for decades. In both in vivo and in vitro studies, the reports showed that apple polyphenol (AP) seems to provide an indirect antioxidant protection by activating cellular antioxidant enzymes to defend against oxidative stress. To address this issue and develop AP into a healthy improvement supplement, we studied the effect and potential mechanisms of AP in indomethacin-treated animal. The results showed AP can decelerate the gastric lesion, significantly suppress lipid peroxidation, increase the level of glutathione and the activity of catalase, and regulate the MAPK signaling proteins. These findings imply that AP protects the gastric mucosa from indomethacin-caused lesions and the protection is at least partially attributable to its antioxidative properties. This alternative medical function of AP may be a safe and effective intervention for preventing indomethacin-induced gastric complications.
Collapse
Affiliation(s)
- Yi-Chen Lee
- 1 Department of Nutrition Therapy, E-DA Hospital , Kaohsiung City, Taiwan
| | - Chun-Wen Cheng
- 2 Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University , Taichung City, Taiwan
| | - Huei-Jane Lee
- 2 Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University , Taichung City, Taiwan .,3 Department of Biochemistry, School of Medicine, Medical College, Chung Shan Medical University , Taichung City, Taiwan .,4 Department of Clinical Biochemistry, Chung Shan Medical University Hospital , Taichung, Taiwan
| | - Huei-Chuien Chu
- 3 Department of Biochemistry, School of Medicine, Medical College, Chung Shan Medical University , Taichung City, Taiwan
| |
Collapse
|