1
|
Soto JA, Gómez AC, Vásquez M, Barreto AN, Molina KS, Zuniga-Gonzalez CA. Biological properties of Moringa oleifera: A systematic review of the last decade. F1000Res 2025; 13:1390. [PMID: 39895949 PMCID: PMC11782934 DOI: 10.12688/f1000research.157194.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
Background The growing incidence of chronic diseases such as cancer and the emergence of drug-resistant microorganisms constitute one of the greatest health challenges of the 21st century. Therefore, it is critical to search for new therapeutic alternatives. Moringa oleifera is a plant well known for the properties of its phytocomponents and its role has been analyzed in a variety of fields, from medicine to biotechnology. Methods In this work, the biological activity of Moringa oleifera in human health was explored through a review of 129 original articles published between 2010 and 2021 related to antitumor activity and its potential uses against chronic and infectious diseases. Results Moringa oleifera extracts showed antioxidant, hypoglycemic, antihypertensive and cytoprotective properties at neuronal, hepatic, renal and cardiac levels. Besides, cytotoxic effects, apoptotic and antiploriferative activity against several cancer cell lines has been demonstrated. On the other hand, the antimicrobial potential of M. oleifera was also evidenced, especially against multidrug-resistant strains. Conclusions Hence, it is supported that there is a wide range of clinical entities in which Moringa oleifera exhibits significant biological activity that could contribute to counteracting metabolic, infectious and chronic diseases in a similar or improved way to the drugs traditionally used.
Collapse
Affiliation(s)
- Javier Andrés Soto
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Andrea Catalina Gómez
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Maryeli Vásquez
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Andrea Natalia Barreto
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - Karen Shirley Molina
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, University of Santander, Bucaramanga, Santander, 540003, Colombia
| | - C. A. Zuniga-Gonzalez
- Area of knowledge of Agrarian and Veterinary Sciences Research Centre, Bioeconomy and Climate Change Unit Research, National Autonomous University of Nicaragua, Leon, Leon, Leon, 21000, Nicaragua
| |
Collapse
|
2
|
Shafiq NE, Mahdee AF. Moringa oleifera Use in Maintaining Oral Health and Its Potential Use in Regenerative Dentistry. ScientificWorldJournal 2023; 2023:8876189. [PMID: 37881795 PMCID: PMC10597730 DOI: 10.1155/2023/8876189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Phytomedicine refers to the use of naturally derived products to cure and mitigate human conditions. Natural products have the advantages of causing minimum side effects, being biocompatible, available, and economical, with a wide array of biological activities. Reports have described the use of natural products with antimicrobial and anti-inflammatory properties to treat oral conditions and promote wound healing. Moringa oleifera, known as the "drumstick" or "horseradish" tree, is believed to have medicinal properties regarding a range of medical conditions, though there is limited information on its use in oral medicine. This narrative review focuses on the use of Moringa extracts in the management of oral conditions, including oral infections, inflammatory conditions, the remineralization of hard tissues, oral wound healing, and tissue regeneration, drawing from both in vitro and in vivo studies which indicate that the potential of Moringa extracts in supporting dentin-pulp regeneration after caries or trauma is worthy of more careful consideration.
Collapse
Affiliation(s)
- Nada E. Shafiq
- Restorative and Aesthetic Dentistry Department, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Anas F. Mahdee
- Restorative and Aesthetic Dentistry Department, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
3
|
Moringa oleifera: Miracle Plant with a Plethora of Medicinal, Therapeutic, and Economic Importance. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Moringa oleifera Lam. (Moringaceae) is one of the most essential medicinal plants primarily found in the rainforest area and forest ecosystem, but is now well-adapted in an organized cultivation system. Moringa oleifera (M. oleifera) is well-known as Drumstick tree, Moringa kai, color, Marengo, Moringe, mulangay, Sahjan, and Sajna, which are its native names commonly used. It has nourishing, beneficial, and preventive effects when taken as food and has an extensive scope of high restorative properties with huge dietary benefits. Different parts of the M. oleifera plants, such as leaves, flowers, fruits, seeds, and roots, contain a significant amount of protein, ß-carotene, amino acids, important minerals, and various phenolic compounds. Because of its multifarious health benefits for its therapeutic value, it is considered an essential plant. The plant is found to be blessed with several medicinal characteristics such as antitumor, anti-inflammatory, antiulcer, antipyretic, antiepileptic, antispasmodic, diuretic, antihypertensive, antidiabetic, cholesterol-level down, cell reinforcement, and hepatoprotective. Moreover, it is used traditionally in the local curative system against cardiac problems, and the antifungal properties are efficiently utilized for the treatment of a wide range of ailments. The present review article was designed to explore the nutritional and economic benefits, medicinal and therapeutic applications, and the future biomedical prospects of Moringa with a view towards human wellbeing.
Collapse
|
4
|
Landázuri AC, Gualle A, Castañeda V, Morales E, Caicedo A, Orejuela-Escobar LM. Moringa oleifera Lam. leaf powder antioxidant activity and cytotoxicity in human primary fibroblasts. Nat Prod Res 2020; 35:6194-6199. [PMID: 33118387 DOI: 10.1080/14786419.2020.1837804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Moringa oleifera Lam. (MO) leaf powder has been well studied, however, understanding how extraction methods of antioxidant compounds affect human primary fibroblasts still needs to be determined. The antioxidant capacity was analyzed through a copper reduction capacity method and primary human skin fibroblasts were evaluated for cytotoxicity using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Antioxidant activity under the influence of methanolic solvents (Trolox equivalents of 160.18 nmol/µL) was 17 times higher than under aqueous solvents. Interestingly, the aqueous extract showed less toxicity in comparison to the methanolic, as cells resulted more susceptible to concentrations ranging from 0.05 to 5 mg/L. Although, MO methanol solvent showed a higher antioxidant capacity in comparison to the aqueous solvent, it presented greater cytotoxicity. Thus, it is concluded that the aqueous extract could be suitable for downstream processing and applications.
Collapse
Affiliation(s)
- Andrea C Landázuri
- Chemical Engineering Department, Engineering, Applied Sciences & Simulation Group (GICAS), Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Instituto de Investigaciones Biológicas y Ambientales BIÓSFERA, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Arleth Gualle
- Chemical Engineering Department, Engineering, Applied Sciences & Simulation Group (GICAS), Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Verónica Castañeda
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Ingeniería en Procesos Biotecnológicos, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Emilia Morales
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Ingeniería en Procesos Biotecnológicos, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Andrés Caicedo
- Chemical Engineering Department, Engineering, Applied Sciences & Simulation Group (GICAS), Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,CEDIA-USFQ Research Initiative, Corporación Ecuatoriana para el Desarrollo de la Investigación y Académica CEDIA & Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Lourdes M Orejuela-Escobar
- Chemical Engineering Department, Engineering, Applied Sciences & Simulation Group (GICAS), Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Instituto de Investigaciones Biológicas y Ambientales BIÓSFERA, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| |
Collapse
|
5
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
6
|
Zhu Y, Du P, Huang S, Yin Q, Yang Y. Quality assessment of Moringa seed shells based on fingerprinting using HPLC-DAD. ACTA CHROMATOGR 2020. [DOI: 10.1556/1326.2019.00545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A fingerprint analysis method was established for the quality control of Moringa seed shells by high-performance liquid chromatography with diode array detection (HPLC–DAD). The HPLC–DAD separation was performed on a Thermo Hypersil Gold C18 (4.6 mm × 250 mm, 5 μm) column by gradient elution with acetonitrile–water as mobile phase. The fingerprint of Moringa seed shells was established with good precision, reproducibility, and stability obtaining within 60 min, and 13 common peaks in the fingerprint were designed. Similarity analysis, principal component analysis (PCA), and hierarchical clustering analysis (HCA) were carried out to analyze the obtained fingerprints. The similarity among 11 batches of samples in addition to No. 5 and 6 was no less than 0.92. Eleven samples could be classified into 2 clusters. The HPLC fingerprint technology and application of chemical pattern recognition can provide a more comprehensive reference for the quality control of medicinal plants.
Collapse
Affiliation(s)
- Yanqin Zhu
- 1 Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
- 2 Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, China
| | - Ping Du
- 2 Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, China
| | - Shaojun Huang
- 2 Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, China
| | - Qinhong Yin
- 3 Yunnan Police College, Kunming 650223, China
| | - Yaling Yang
- 1 Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
7
|
Chin CY, Ng PY, Ng SF. Moringa oleifera standardised aqueous leaf extract-loaded hydrocolloid film dressing: in vivo dermal safety and wound healing evaluation in STZ/HFD diabetic rat model. Drug Deliv Transl Res 2019; 9:453-468. [PMID: 29560587 DOI: 10.1007/s13346-018-0510-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Previously, Moringa oleifera leaf (MOL) standardised aqueous extract-loaded films were successfully developed and they showed potential wound healing activity in vitro. The objective of this study was to evaluate in vivo dermal safety as well as wound healing efficacy of these MOL film dressings (containing 0.1, 0.5 and 1% MOL) on diabetic rat model. The acute dermal toxicity was carried out on healthy rats, and signs of toxicity over 14 days were observed. For wound healing studies, excision and abrasion wounds were created out on the STZ/HFD-induced diabetic rat model and the wound healing was studied over 21 days. The wound healing evaluation determined by histology staining, hydroxyproline assay and ELISA assays on wound healing related-growth factors, cytokines and chemokines. MOL film formulations exhibited no signs of dermal toxicities. In excision wound model, 0.5% film significantly enhanced the wound closure by 77.67 ± 7.28% at day 7 compared to control group. While in abrasion wounds, 0.5% MOL films accelerated wound closure significantly at 81 ± 4.5% as compared to the control. The histology findings and hydroxyproline assay revealed that high collagen deposition and complete re-epithelialisation were observed for the wounds treated with 0.5 and 1% MOL films. All MOL film dressings had successfully tested non-toxic via in vivo safety dermal toxicity. It was concluded that the 0.5% MOL extract-loaded film had proven to be the most promising approach to accelerate diabetic wound healing process in both full-thickness excision and partial thickness abrasion wounds on the HFD/STZ-induced diabetic type II model.
Collapse
Affiliation(s)
- Chai-Yee Chin
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Pei-Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Shiow-Fern Ng
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Bhattacharya A, Tiwari P, Sahu PK, Kumar S. A Review of the Phytochemical and Pharmacological Characteristics of Moringa oleifera. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2018; 10:181-191. [PMID: 30568375 PMCID: PMC6266645 DOI: 10.4103/jpbs.jpbs_126_18] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Moringa oleifera is a valued medicinal plant in traditional folk medicine. Many pharmacological studies have shown the ability of this plant to exhibit analgesic, anti-inflammatory, antipyretic, anticancer, antioxidant, nootropic, hepatoprotective, gastroprotective, anti-ulcer, cardiovascular, anti-obesity, antiepileptic, antiasthmatic, antidiabetic, anti-urolithiatic, diuretic, local anesthetic, anti-allergic, anthelmintic, wound healing, antimicrobial, immunomodulatory, and antidiarrheal properties. This review is a comprehensive summary of the phytochemical and pharmacological activities as well as the traditional and therapeutic uses of this plant. M. oleifera has wide traditional and pharmacological uses in various pathophysiological conditions. We will review the various properties of M. oleifera (drumstick tree) and focus on its various medicinal properties. We think that it is an attractive subject for further experimental and clinical investigations.
Collapse
Affiliation(s)
- Ayon Bhattacharya
- Department of Pharmacology, KPC Medical College, West Bengal University of Health Sciences, Kolkata, West Bengal, India
| | - Prashant Tiwari
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha O Anusandhan (SOA) University, Bhubaneswar, Orissa, India
| | - Pratap K. Sahu
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha O Anusandhan (SOA) University, Bhubaneswar, Orissa, India
| | - Sanjay Kumar
- Department of Pharmacology, GSL Medical College, Rajahmundry, Andhra Pradesh, India
| |
Collapse
|
9
|
Gothai S, Muniandy K, Zarin MA, Sean TW, Kumar SS, Munusamy MA, Fakurazi S, Arulselvan P. Chemical Composition of Moringa oleifera Ethyl Acetate Fraction and Its Biological Activity in Diabetic Human Dermal Fibroblasts. Pharmacogn Mag 2017; 13:S462-S469. [PMID: 29142400 PMCID: PMC5669083 DOI: 10.4103/pm.pm_368_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/08/2016] [Indexed: 01/24/2023] Open
Abstract
Background: Moringa oleifera (MO), commonly known as the drumstick tree, is used in folklore medicine for the treatment of skin disease. Objective: The objective of this study is to evaluate the ethyl acetate (EtOAc) fraction of MO leaves for in vitro antibacterial, antioxidant, and wound healing activities and conduct gas chromatography-mass spectrometry (GC-MS) analysis. Materials and Methods: Antibacterial activity was evaluated against six Gram-positive bacteria and 10 Gram-negative bacteria by disc diffusion method. Free radical scavenging activity was assessed by 1, 1-diphenyl-2-picryl hydrazyl (DPPH) radical hydrogen peroxide scavenging and total phenolic content (TPC). Wound healing efficiency was studied using cell viability, proliferation, and scratch assays in diabetic human dermal fibroblast (HDF-D) cells. Results: The EtOAc fraction showed moderate activity against all bacterial strains tested, and the maximum inhibition zone was observed against Streptococcus pyogenes (30 mm in diameter). The fraction showed higher sensitivity to Gram-positive strains than Gram-negative strains. In the quantitative analysis of antioxidant content, the EtOAc fraction was found to have a TPC of 65.81 ± 0.01. The DPPH scavenging activity and the hydrogen peroxide assay were correlated with the TPC value, with IC50 values of 18.21 ± 0.06 and 59.22 ± 0.04, respectively. The wound healing experiment revealed a significant enhancement of cell proliferation and migration of HDF-D cells. GC-MS analysis confirmed the presence of 17 bioactive constituents that may be the principal factors in the significant antibacterial, antioxidant, and wound healing activity. Conclusion: The EtOAc fraction of MO leaves possesses remarkable wound healing properties, which can be attributed to the antibacterial and antioxidant activities of the fraction. SUMMARY Moringa oleifera (MO) leaf ethyl acetate (EtOAc) fraction possesses antibacterial activities toward Gram-positive bacteria such as Streptococcus pyogenes, Streptococcus faecalis, Bacillus subtilis, Bacillus cereus and Staphylococcus aureus, and Gram-negative bacteria such as Proteus mirabilis and Salmonella typhimurium MO leaf EtOAc fraction contained the phenolic content of 65.81 ± 0.01 and flavonoid content of 37.1 ± 0.03, respectively. In addition, the fraction contained 17 bioactive constituents associated with the antibacterial, antioxidant, and wound healing properties that were identified using gas chromatography-mass spectrometry analysis MO leaf EtOAc fraction supports wound closure rate about 80% for treatments when compared with control group.
Abbreviations used: MO: Moringa oleifera; EtOAc: Ethyl acetate; GC-MS: Gas Chromatography-Mass Spectrometry; HDF-D: Diabetic Human Dermal Fibroblast cells.
Collapse
Affiliation(s)
- Sivapragasam Gothai
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Katyakyini Muniandy
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mazni Abu Zarin
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tan Woan Sean
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - S Suresh Kumar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Murugan A Munusamy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sharida Fakurazi
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Palanisamy Arulselvan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|