1
|
Kamal Z, Lamba AK, Faraz F, Tandon S, Datta A, Ansari N, Madni ZK, Pandey J. Effect of gamma and Ultraviolet-C sterilization on BMP-7 level of indigenously prepared demineralized freeze-dried bone allograft. Cell Tissue Bank 2024; 25:475-484. [PMID: 37578672 DOI: 10.1007/s10561-023-10103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
The presence of bone morphogenetic proteins in demineralized freeze-dried bone allograft (DFDBA) are responsible for developing hard tissues in intraosseous defects. The most common mode of sterilization of bone allografts, i.e., Gamma rays, have dramatic effects on the structural and biological properties of DFDBA, leading to loss of BMPs. Ultraviolet-C radiation is a newer approach to sterilize biodegradable scaffolds, which is simple to use and ensures efficient sterilization. However, UV-C radiation has not yet been effectively studied to sterilize bone allografts. This study aimed to compare and evaluate the effectiveness of Gamma and Ultraviolet-C rays in sterilizing indigenously prepared DFDBA and assess their effect on the quantity of BMP-7 present in the allograft. DFDBA samples from non-irradiated, gamma irradiated, and UV-C irradiated groups were tested for BMP-7 level and samples sterilized with gamma and UV-C rays were analysed for sterility testing. The estimated mean BMP-7 level was highest in non-irradiated DFDBA samples, followed by UV-C irradiated, and the lowest in gamma irradiated samples. Our study concluded that UV-C rays effectively sterilized DFDBA as indicated by negative sterility test and comprised lesser degradation of BMP-7 than gamma irradiation.
Collapse
Affiliation(s)
- Zainab Kamal
- Department of Periodontics , Maulana Azad Institute of Dental Sciences , New Delhi, 110002, India.
| | - Arundeep Kaur Lamba
- Department of Periodontics , Maulana Azad Institute of Dental Sciences , New Delhi, 110002, India
| | - Farrukh Faraz
- Department of Periodontics , Maulana Azad Institute of Dental Sciences , New Delhi, 110002, India
| | - Shruti Tandon
- Department of Periodontics , Maulana Azad Institute of Dental Sciences , New Delhi, 110002, India
| | - Archita Datta
- Department of Periodontics , Maulana Azad Institute of Dental Sciences , New Delhi, 110002, India
| | - Nasreen Ansari
- Department of Periodontics , Maulana Azad Institute of Dental Sciences , New Delhi, 110002, India
| | - Zaid Kamal Madni
- Structural Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Jaya Pandey
- Department of Periodontics , Maulana Azad Institute of Dental Sciences , New Delhi, 110002, India
| |
Collapse
|
2
|
Kong J, Zhou X, Lu J, Han Q, Ouyang X, Chen D, Liu A. Maclurin Promotes the Chondrogenic Differentiation of Bone Marrow Mesenchymal Stem Cells by Regulating miR-203a-3p/Smad1. Cell Reprogram 2022; 24:9-20. [PMID: 35180001 DOI: 10.1089/cell.2021.0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) differentiate into chondrocytes under appropriate conditions, providing a method for the treatment of bone- and joint-related diseases. Previously, we found that mulberry (Morus nigra) promoted the chondrogenic differentiation of BMSCs. Although the mechanism of action and active ingredients remain unknown, several studies describe the involvement of micro-RNAs. We obtained BMSCs from the bone marrow of Sprague Dawley rats. Cell Counting Kit-8 assays showed that maclurin (25 μg/mL) treatment was not toxic to BMSCs, and compared with untreated controls, maclurin upregulated Sox9 and Col2a expression. Quantitative-PCR revealed that miR-203a-3p levels decreased significantly during chondrogenic differentiation of BMSCs promoted by maclurin. Compared with treatment with an miR-203a-3p inhibitor, miR-203a-3p mimic inhibited expression of Sox9 and Col2a as evidenced by immunofluorescence staining and Western blotting. Smad1 was identified as a key target gene of miR-203a-3p according to biological-prediction software, and miR-203a-3p negatively regulated its transcription and translation in the dual-luciferase reporter gene assay and Western blotting. Sox9 and Col2a expression was downregulated following transfection of short interfering Smad1 (siSmad1) plasmids into BMSCs. We elucidated how maclurin promotes the chondrogenic differentiation of BMSCs by regulating miR-203a-3p/Smad1, which provides a strategy for future exploration of osteoarthritis therapy through cell transplantation.
Collapse
Affiliation(s)
- Jiechen Kong
- Center for Experimental Teaching, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xianxi Zhou
- Center for Experimental Teaching, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jianghua Lu
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qianting Han
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiyan Ouyang
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dongfeng Chen
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Aijun Liu
- Center for Experimental Teaching, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Ectopic Laryngeal Ossification after Bone Morphogenetic Protein-2. SURGERIES 2021; 2:384-390. [PMID: 35463995 PMCID: PMC9030225 DOI: 10.3390/surgeries2040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We report two cases of ectopic bone formation in the head and neck following treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2). Surgical pathologic data, laryngoscopy imaging, CT imaging, and patient medical history were obtained. First, we report osseous metaplasia in the vocal fold in a 67-year-old male following mandibular dental implants with rhBMP-2; second, a case of severe bony overgrowth of the larynx and fusion to the anterior cervical spine (ACS) in a 73-year-old male following multiple anterior cervical discectomies and fusions with rhBMP-2. Ectopic bone formation following rhBMP-2 has been previously reported. Adverse events like local swelling and edema leading to dysphagia and even airway obstruction after cervical spine application of rhBMP-2 have also been widely reported. Due to the uncommon nature of abnormal bony growth in soft tissue areas of the head and neck and the previously documented adverse effects of rhBMP-2 use, especially in the cervical spine, we consider the two unusual case presentations of ectopic bony formation highly likely to be linked with rhBMP-2. We urge awareness of the adverse effects caused by rhBMP-2, and urge caution in dosing.
Collapse
|
4
|
Sneha K, Sowjanya K, Vaishnavi V, Chandra RV. Comparative Evaluation of Efficacy between Recombinant Human Bone Morphogenetic Protein-2 Impregnated with Absorbable Sponge and Platelet-Rich Fibrin in the Treatment of Grade II Furcation Defects: A Randomized Controlled Trial. Contemp Clin Dent 2021; 12:419-425. [PMID: 35068843 PMCID: PMC8740792 DOI: 10.4103/ccd.ccd_828_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/01/2020] [Accepted: 10/31/2020] [Indexed: 11/28/2022] Open
Abstract
Aim and Objectives: The objective of the study was to clinically and radiographically compare and evaluate the regenerative potential of recombinant human bone morphogenetic protein-2 (RhBMP-2) impregnated with absorbable collagen sponge and platelet-rich fibrin (PRF) in the treatment of Grade II furcation defects. Patients and Methods: Thirty-two subjects were randomly assigned to each of the following groups: bone morphogenetic protein (BMP) group and PRF group, with one defect/subject. Sixteen Grade II furcation defects were treated with RhBMP-2 impregnated with absorbable collagen sponge in the BMP group and the remaining 16 defects were treated with PRF in the PRF group. Clinical and radiographic parameters which were evaluated at baseline, postoperative 1 week, 3 months, and 6 months were probing pocket depth, clinical attachment level, scoring of plaque index, and gingival index, and the bone fill was evaluated using Digital Subtraction technique and morphometric area analysis with ImageJ® software. Results: RhBMP-2 in absorbable collagen sponge was effective in increasing the bone fill in Grade II furcation defects when compared to PRF alone (P = 0.05). In relation to clinical parameters, both the groups showed no statistical significance between them. Conclusion: The unique regenerative potential of RhBMP-2 impregnated with absorbable collagen sponge makes it a potential agent to be used as a graft material for the treatment of Grade II furcation defects.
Collapse
Affiliation(s)
- Kidambi Sneha
- Department of Periodontology, Sri Venkata Sai Institute of Dental Sciences, Mahabubnagar, Telangana, India
| | - Kacharla Sowjanya
- Department of Periodontology, Sri Venkata Sai Institute of Dental Sciences, Mahabubnagar, Telangana, India
| | - Varanasi Vaishnavi
- Department of Periodontology, Sri Venkata Sai Institute of Dental Sciences, Mahabubnagar, Telangana, India
| | - Rampalli Viswa Chandra
- Department of Periodontology, Sri Venkata Sai Institute of Dental Sciences, Mahabubnagar, Telangana, India
| |
Collapse
|
5
|
Elango J, Selvaganapathy PR, Lazzari G, Bao B, Wenhui W. Biomimetic collagen-sodium alginate-titanium oxide (TiO2) 3D matrix supports differentiated periodontal ligament fibroblasts growth for periodontal tissue regeneration. Int J Biol Macromol 2020; 163:9-18. [DOI: 10.1016/j.ijbiomac.2020.06.173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022]
|
6
|
Zakrzewski W, Dobrzynski M, Rybak Z, Szymonowicz M, Wiglusz RJ. Selected Nanomaterials' Application Enhanced with the Use of Stem Cells in Acceleration of Alveolar Bone Regeneration during Augmentation Process. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1216. [PMID: 32580409 PMCID: PMC7353104 DOI: 10.3390/nano10061216] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 01/15/2023]
Abstract
Regenerative properties are different in every human tissue. Nowadays, with the increasing popularity of dental implants, bone regenerative procedures called augmentations are sometimes crucial in order to perform a successful dental procedure. Tissue engineering allows for controlled growth of alveolar and periodontal tissues, with use of scaffolds, cells, and signalling molecules. By modulating the patient's tissues, it can positively influence poor integration and healing, resulting in repeated implant surgeries. Application of nanomaterials and stem cells in tissue regeneration is a newly developing field, with great potential for maxillofacial bony defects. Nanostructured scaffolds provide a closer structural support with natural bone, while stem cells allow bony tissue regeneration in places when a certain volume of bone is crucial to perform a successful implantation. Several types of selected nanomaterials and stem cells were discussed in this study. Their use has a high impact on the efficacy of the current and future procedures, which are still challenging for medicine. There are many factors that can influence the regenerative process, while its general complexity makes the whole process even harder to control. The aim of this study was to evaluate the effectiveness and advantage of both stem cells and nanomaterials in order to better understand their function in regeneration of bone tissue in oral cavity.
Collapse
Affiliation(s)
- Wojciech Zakrzewski
- Department of Experimental Surgery and Biomaterial Research, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland; (W.Z.); (Z.R.); (M.S.)
| | - Maciej Dobrzynski
- Department of Conservative Dentistry and Pedodontics, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Zbigniew Rybak
- Department of Experimental Surgery and Biomaterial Research, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland; (W.Z.); (Z.R.); (M.S.)
| | - Maria Szymonowicz
- Department of Experimental Surgery and Biomaterial Research, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland; (W.Z.); (Z.R.); (M.S.)
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
| |
Collapse
|
7
|
Klimek K, Ginalska G. Proteins and Peptides as Important Modifiers of the Polymer Scaffolds for Tissue Engineering Applications-A Review. Polymers (Basel) 2020; 12:E844. [PMID: 32268607 PMCID: PMC7240665 DOI: 10.3390/polym12040844] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022] Open
Abstract
Polymer scaffolds constitute a very interesting strategy for tissue engineering. Even though they are generally non-toxic, in some cases, they may not provide suitable support for cell adhesion, proliferation, and differentiation, which decelerates tissue regeneration. To improve biological properties, scaffolds are frequently enriched with bioactive molecules, inter alia extracellular matrix proteins, adhesive peptides, growth factors, hormones, and cytokines. Although there are many papers describing synthesis and properties of polymer scaffolds enriched with proteins or peptides, few reviews comprehensively summarize these bioactive molecules. Thus, this review presents the current knowledge about the most important proteins and peptides used for modification of polymer scaffolds for tissue engineering. This paper also describes the influence of addition of proteins and peptides on physicochemical, mechanical, and biological properties of polymer scaffolds. Moreover, this article sums up the major applications of some biodegradable natural and synthetic polymer scaffolds modified with proteins and peptides, which have been developed within the past five years.
Collapse
Affiliation(s)
- Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland;
| | | |
Collapse
|
8
|
Wang C, Zang H, Zhou D. Bone morphogenetic protein-2 exhibits therapeutic benefits for osteonecrosis of the femoral head through induction of cartilage and bone cells. Exp Ther Med 2018; 15:4298-4308. [PMID: 29849774 PMCID: PMC5962870 DOI: 10.3892/etm.2018.5941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/20/2017] [Indexed: 12/29/2022] Open
Abstract
Osteonecrosis of the femoral head is an orthopedic disease caused by femoral head damage or insufficient blood supply, which leads to the death of bone cells and bone marrow. Osteonecrosis of the femoral head leads to changes in the structure of the femoral head, femoral head collapse and joint dysfunction. Bone morphogenetic protein-2 (BMP-2) exhibits beneficial effects on bone formation, repair and angiogenesis at the femoral head. In the present study, the therapeutic effects of recombinant human BMP-2 containing an Fc fragment (rBMP-2/Fc) were investigated on a steroid induced mouse model of osteonecrosis of the femoral head. Bone cell viability was used to determine the in vitro effects of rBMP-2/Fc. The therapeutic efficacies of rBMP-2/Fc on mice with osteonecrosis of the femoral head were evaluated using clinical arthritis scores. The expression levels of inflammatory factors in the mice were analyzed by reverse transcription-quantitative polymerase chain reaction. Histological analysis was used to evaluate the effects of rBMP-2/Fc on the femoral head. The results revealed that rBMP-2/Fc treatment significantly increased the IL-6, IL-10, vascular endothelial growth factor and macrophage colony-stimulating factor expression levels in synovial cells compared with the control group (P<0.01). Furthermore, it was observed that rBMP-2/Fc significantly improved the viability and growth of synovial cells (P<0.01) through the nuclear factor (NF)-κB signaling pathway. Treatment with rBMP-2/Fc significantly decreased receptor activator of NF-κB ligand expression levels. Furthermore, in vivo experiments demonstrated that rBMP-2/Fc treatment markedly relieved the arthralgia and damage caused by osteonecrosis of the femoral head. In conclusion, rBMP-2/Fc treatment may be beneficial for articular cartilage repair by the upregulation of angiogenesis factors through the down regulation of the NF-κB signaling pathway in mice with osteonecrosis of the femoral head. This preclinical data suggests that rBMP-2/Fc may be a promising novel agent for treatment of osteonecrosis of the femoral head.
Collapse
Affiliation(s)
- Chunhui Wang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Huimei Zang
- Department of Cardiovascular Medicine, Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function, Jinan, Shandong 250012, P.R. China
| | - Dongsheng Zhou
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
9
|
Zhen R, Yang J, Wang Y, Li Y, Chen B, Song Y, Ma G, Yang B. Hepatocyte growth factor improves bone regeneration via the bone morphogenetic protein‑2‑mediated NF‑κB signaling pathway. Mol Med Rep 2018; 17:6045-6053. [PMID: 29436622 DOI: 10.3892/mmr.2018.8559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/03/2017] [Indexed: 11/05/2022] Open
Abstract
Bone regeneration is an important process associated with the treatment of osteonecrosis, which is caused by various factors. Hepatocyte growth factor (HGF) is an active biological factor that has multifunctional roles in cell biology, life sciences and clinical medicine. It has previously been suggested that bone morphogenetic protein (BMP)‑2 exerts beneficial roles in bone formation, repair and angiogenesis in the femoral head. The present study aimed to investigate the benefits and molecular mechanisms of HGF in bone regeneration. The viability of osteoblasts and osteoclasts were studied in vitro. In addition, the expression levels of tumor necrosis factor (TNF)‑α, monocyte chemotactic protein (MCP)‑1, interleukin (IL)‑1 and IL‑6 were detected in a mouse fracture model following treatment with HGF. The expression and activity of nuclear factor (NF)‑κB were also analyzed in osteocytes post‑treatment with HGF. Histological analysis was used to determine the therapeutic effects of HGF on mice with fractures. The migration and differentiation of osteoblasts and osteoclasts were investigated in HGF‑incubated cells. Furthermore, angiogenesis and BMP‑2 expression were analyzed in the mouse fracture model post‑treatment with HGF. The results indicated that HGF regulates the cell viability of osteoblasts and osteoclasts, and also balanced the ratio between osteoblasts and osteoclasts. In addition, HGF decreased the serum expression levels of TNF‑α, MCP‑1, IL‑1 and IL‑6 in experimental mice. The results of a mechanistic analysis demonstrated that HGF upregulated p65, IκB kinase‑β and IκBα expression in osteoblasts from experimental mice. In addition, the expression levels of vascular endothelial growth factor, BMP‑2 receptor, receptor activator of NF‑κB ligand and macrophage colony‑stimulating factor were upregulated by HGF, which may effectively promote blood vessel regeneration, and contribute to the formation and revascularization of tissue‑engineered bone. Furthermore, HGF promoted BMP‑2 expression and enhanced angiogenesis at the fracture location. These results suggested that HGF treatment may significantly promote bone regeneration in a mouse fracture model. In conclusion, these results indicated that HGF is involved in bone regeneration, angiogenesis and the balance between osteoblasts and osteoclasts, thus suggesting that HGF may be considered a potential agent for the treatment of fractures via the promotion of bone regeneration through regulation of the BMP‑2‑mediated NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Ruixin Zhen
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Jianing Yang
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Yu Wang
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Yubo Li
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Bin Chen
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Youxin Song
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Guiyun Ma
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Bo Yang
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
10
|
Poon B, Kha T, Tran S, Dass CR. Bone morphogenetic protein-2 and bone therapy: successes and pitfalls. J Pharm Pharmacol 2016; 68:139-47. [DOI: 10.1111/jphp.12506] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/19/2015] [Indexed: 01/05/2023]
Abstract
Abstract
Objectives
Bone morphogenetic proteins (BMPs), more specifically BMP-2, are being increasingly used in orthopaedic surgery due to advanced research into osteoinductive factors that may enhance and improve bone therapy. There are many areas in therapy that BMP-2 is being applied to, including dental treatment, open tibial fractures, cancer and spinal surgery. Within these areas of treatment, there are many reports of successes and pitfalls. This review explores the use of BMP-2 and its successes, pitfalls and future prospects in bone therapy.
Methods
The PubMed database was consulted to compile this review.
Key findings
With successes in therapy, there were descriptions of a more rapid healing time with no signs of rejection or infection attributed to BMP-2 treatment. Pitfalls included BMP-2 ‘off-label’ use, which lead to various adverse effects.
Conclusions
Our search highlighted that optimising treatment with BMP-2 is a direction that many researchers are exploring, with areas of current research interest including concentration and dose of BMP-2, carrier type and delivery.
Collapse
Affiliation(s)
- Bonnie Poon
- School of Pharmacy, Curtin University, Bentley, WA, Australia
| | - Tram Kha
- School of Pharmacy, Curtin University, Bentley, WA, Australia
| | - Sally Tran
- School of Pharmacy, Curtin University, Bentley, WA, Australia
| | - Crispin R Dass
- School of Pharmacy, Curtin University, Bentley, WA, Australia
- Curtin Biosciences Research Precinct, Bentley, WA, Australia
| |
Collapse
|
11
|
Potential of graphene for tissue engineering applications. Transl Res 2015; 166:399-400. [PMID: 25936761 DOI: 10.1016/j.trsl.2015.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/24/2015] [Accepted: 04/03/2015] [Indexed: 11/24/2022]
|