1
|
Zhu S, Xu N, Zeng H. Molecular complexity of intraductal carcinoma of the prostate. Cancer Med 2024; 13:e6939. [PMID: 38379333 PMCID: PMC10879723 DOI: 10.1002/cam4.6939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 02/22/2024] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is an aggressive subtype of prostate cancer characterized by the growth of tumor cells within the prostate ducts. It is often found alongside invasive carcinoma and is associated with poor prognosis. Understanding the molecular mechanisms driving IDC-P is crucial for improved diagnosis, prognosis, and treatment strategies. This review summarizes the molecular characteristics of IDC-P and their prognostic indications, comparing them to conventional prostate acinar adenocarcinoma, to gain insights into its unique behavior and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Nanwei Xu
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
2
|
Zhang S, O'Regan R, Xu W. The emerging role of mediator complex subunit 12 in tumorigenesis and response to chemotherapeutics. Cancer 2019; 126:939-948. [PMID: 31869450 DOI: 10.1002/cncr.32672] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/07/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022]
Abstract
Transcriptional dysregulation induced by disease-defining genetic alterations of proteins in transcriptional machinery is a key feature of cancers. Mediator complex subunit 12 (MED12) is the central architectural subunit in the kinase module of Mediator, a large transcriptional regulatory complex that controls essential steps of transcription. Emerging evidence links deregulated MED12 to human cancers. MED12 is frequently mutated in benign tumors and cancers. Although the missense mutations of MED12 in benign tumors disrupt the kinase activity of Mediator, MED12 mutations in cancers could eliminate the interaction between Mediator complex and RNA polymerase II, leading to severe transcriptional misregulation. Aberrant expression of MED12 is associated with the prognosis of various types of human cancers. Loss of MED12 function has been associated with the development of resistance to chemotherapeutics. Moreover, MED12 is modified by posttranscriptional regulations. Arginine methylation of MED12 has been shown to regulate MED12-mediated transcriptional regulation and response to chemotherapeutics in human cancer cell lines. In this mini-review, the authors provide an overview of the roles of MED12 in the development of benign and malignant tumors as well as its roles in chemoresistance. The studies of MED12 exemplify that aberrant transcriptional programming is a therapeutic vulnerability for certain types of cancer.
Collapse
Affiliation(s)
- Shengjie Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin.,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ruth O'Regan
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
3
|
Ajabnoor GMA, Mohammed NA, Banaganapalli B, Abdullah LS, Bondagji ON, Mansouri N, Sahly NN, Vaidyanathan V, Bondagji N, Elango R, Shaik NA. Expanded Somatic Mutation Spectrum of MED12 Gene in Uterine Leiomyomas of Saudi Arabian Women. Front Genet 2018; 9:552. [PMID: 30619444 PMCID: PMC6302612 DOI: 10.3389/fgene.2018.00552] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
MED12, a subunit of mediator complex genes is known to harbor genetic mutations, (mostly in exon 2), causal to the genesis of uterine leiomyomas among Caucasian, African American, and Asian women. However, the precise relationship between genetic mutations vs. protein or disease phenotype is not well-explained. Therefore, we sought to replicate the MED12 mutation frequency in leiomyomas of Saudi Arabian women, who represents ethnically and culturally distinct population. We performed molecular screening of MED12 gene (in 308 chromosomes belonging to 154 uterine biopsies), analyzed the genotype-disease phenotype correlations and determined the biophysical characteristics of mutated protein through diverse computational approaches. We discovered that >44% (34/77) leiomyomas of Arab women carry a spectrum of MED12 mutations (30 missense, 1 splice site, and 3 indels). In addition to known codon 44, we observed novel somatic mutations in codons 36, 38, and 55. Most genetically mutated tumors (27/30; 90%) demonstrated only one type of genetic change, highlighting that even single allele change in MED12 can have profound impact in transforming the normal uterine myometrium to leiomyomas. An interesting inverse correlation between tumor size and LH is observed when tumor is positive to MED12 mutation (p < 0.05). Our computational investigations suggest that amino acid substitution mutations in exon-2 region of MED12 might contribute to potential alterations in phenotype as well as the stability of MED12 protein. Our study, being the first one from Arab world, confirms the previous findings that somatic MED12 mutations are critical to development and progression of uterine leiomyomas irrespective of the ethnic background. We recommend that mutation screening, particularly codon 44 of MED12 can assist in molecular diagnostics of uterine leiomyomas in majority of the patients.
Collapse
Affiliation(s)
- Ghada M A Ajabnoor
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nesma Amin Mohammed
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Layla Saleh Abdullah
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ola Nabeel Bondagji
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nisma Mansouri
- Department of Gynecology and Obstetrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nora Naif Sahly
- Department of Gynecology and Obstetrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Venkatesh Vaidyanathan
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabeel Bondagji
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Gynecology and Obstetrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|