1
|
He Y, Rogasch JMM, Savic LJ. PET Imaging and Key Radiotracers for Evaluating Response to Locoregional Therapy in Hepatocellular Carcinoma. PET Clin 2025:S1556-8598(25)00024-0. [PMID: 40287367 DOI: 10.1016/j.cpet.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Locoregional therapies (LRTs) play a considerable role in the management of hepatocellular carcinoma (HCC), especially for patients who are not suitable for radical resection or transplantation. In clinical practice, assessment of LRTs is mainly based on computed tomography and MR imaging, but functional and metabolic information is less accessible. This article reviews the use of various the standardized uptake value parameters based on PET and multiple radiotracers for managing HCC after treatment with different LRTs, as well as parts of preclinical research. It discusses the current use of PET in more detail, as well as its advantages, disadvantages, and prospects.
Collapse
Affiliation(s)
- Yubei He
- Department of Radiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany; Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin 13125, Germany
| | - Julian M M Rogasch
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Lynn Jeanette Savic
- Department of Radiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany; Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin 13125, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
2
|
Zeimpekis KG, Sari H, Gözlügöl N, Achangwa NR, Shi K, Schindewolf M, Afshar-Oromieh A, Rominger A, Seifert R. Evaluation of long axial field-of-view (LAFOV) PET/CT for post-treatment dosimetry in Yttrium-90 radioembolization of liver tumors: a comparative study with conventional SPECT imaging. Eur J Nucl Med Mol Imaging 2025; 52:1460-1471. [PMID: 39730786 PMCID: PMC11839895 DOI: 10.1007/s00259-024-07034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/15/2024] [Indexed: 12/29/2024]
Abstract
PURPOSE Long axial field-of-view (LAFOV) positron emission tomography/computed tomography (PET/CT) scanners enable high sensitivity and wide anatomical coverage. Therefore, they seem ideal to perform post-selective internal radiation therapy (SIRT) 90Y scans, which are needed, to confirm that the dose is delivered to the tumors and that healthy organs are spared. However, it is unclear to what extent the use of LAFOV PET is feasible and which dosimetry approaches results in accurate measurements. METHODS In this retrospective analysis, a total number of 32 patients was included (median age 71, IQR 14), which had hepatocellular carcinoma, cholangiocarcinoma, or liver metastases. All patients underwent SIRT, and the post-therapy scan was acquired on a single photon emission computed tomography/computed tomography (SPECT/CT) and a LAFOV Biograph Quadra PET/CT with a 20-minute acquisition time. Post-treatment dosimetry, regarding the tumor, whole-liver and lung (LMD) absorbed dose was done using an organ-wise (Simplicit90Y) and a voxel-wise approach (HERMIA Dosimetry) which used a semi-Monte Carlo algorithm. The lung shunt fraction (LSF) was also measured using the voxel-wise approach and compared to the planned. RESULTS The planning, post-treatment SPECT and PET (SPECTpre, SPECTpost, PETpost) median tumor doses based on the organ-wise dosimetry were 276.0 Gy (200.0-330.0 Gy), 232.0 Gy (158.5-303.5 Gy) and 267.5 Gy (182.5-370.8 Gy). In contrast, the median voxel-wise PETpost dose was significantly smaller than the planned SPECTpre (152.5 Gy (94.8-223.8 Gy); p < 0.00001). Moreover, the median tumor absorbed dose at 90% (D90) of the tumor volume was significantly higher in SPECTpost compared with PETpost (123.5 Gy; 81.5-180.0 vs. 30.5 Gy; 11.3-106.3; p < 0.00001). The PETpost measured LSF was significantly lower compared to the planned SPECTpre (0.89%; 0.4-1.3% vs. 2.3%; 1.5-3.6%; p < 0.0001). Similarly, the measured PETpost median LMD was considerably lower to the planned SPECTpre (1.2 Gy; 0.6-2.3 vs. 2.5 Gy; 1.4-4.7; p < 0.0001). CONCLUSION LAFOV PET enabled the direct measurement of post therapy lung dose and tumor doses that correlated well with the planned treatment doses. However, current voxel-wise-based tumor dosimetry seems to be inaccurate for LAFOV PET. In addition, dose volume histogram-based metrics also significantly underestimate the delivered dose. Therefore, improved dosimetry tools are needed for reliable voxel-wise 90Y dosimetry to leverage the sensitivity and spatial resolution of LAFOV PET scanners.
Collapse
Affiliation(s)
- Konstantinos G Zeimpekis
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland.
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Nasir Gözlügöl
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland
| | - Ngwe Rawlings Achangwa
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland
| | - Marc Schindewolf
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland
| | - Robert Seifert
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland
| |
Collapse
|
3
|
Zeimpekis KG, Mercolli L, Conti M, Sari H, Rominger A, Rathke H. 90Y post-radioembolization clinical assessment with whole-body Biograph Vision Quadra PET/CT: image quality, tumor, liver and lung dosimetry. Eur J Nucl Med Mol Imaging 2024; 51:2100-2113. [PMID: 38347299 PMCID: PMC11139701 DOI: 10.1007/s00259-024-06650-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/07/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Evaluation of 90Y liver radioembolization post-treatment clinical data using a whole-body Biograph Vision Quadra PET/CT to investigate the potential of protocol optimization in terms of scan time and dosimetry. METHODS 17 patients with hepatocellular carcinoma with median (IQR) injected activity 2393 (1348-3298) MBq were included. Pre-treatment dosimetry plan was based on 99mTc-MAA SPECT/CT with Simplicit90Y™ and post-treatment validation with Quadra using Simplicit90Y™ and HERMIA independently. Regarding the image analysis, mean and peak SNR, the coefficient of variation (COV) and lesion-to-background ratio (LBR) were evaluated. For the post-treatment dosimetry validation, the mean tumor, whole liver and lung absorbed dose evaluation was performed using Simplicit90Y and HERMES. Images were reconstructed with 20-, 15-, 10-, 5- and 1- min sinograms with 2, 4, 6 and 8 iterations. Wilcoxon signed rank test was used to show statistical significance (p < 0.05). RESULTS There was no difference of statistical significance between 20- and 5- min reconstructed times for the peak SNR, COV and LBR. In addition, there was no difference of statistical significance between 20- and 1- min reconstructed times for all dosimetry metrics. Lung dosimetry showed consistently lower values than the expected. Tumor absorbed dose based on Simplicit90Y™ was similar to the expected while HERMES consistently underestimated significantly the measured tumor absorbed dose. Finally, there was no difference of statistical significance between expected and measured tumor, whole liver and lung dose for all reconstruction times. CONCLUSION In this study we evaluated, in terms of image quality and dosimetry, whole-body PET clinical images of patients after having been treated with 90Y microspheres radioembolization for liver cancer. Compared to the 20-min standard scan, the simulated 5-min reconstructed images provided equal image peak SNR and noise behavior, while performing also similarly for post-treatment dosimetry of tumor, whole liver and lung absorbed doses.
Collapse
Affiliation(s)
- Konstantinos G Zeimpekis
- Department of Nuclear Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland.
| | - Lorenzo Mercolli
- Department of Nuclear Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland
| | - Maurizio Conti
- Molecular Imaging, Siemens Healthineers, Knoxville, TN, USA
| | - Hasan Sari
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland
| | - Hendrik Rathke
- Department of Nuclear Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland
| |
Collapse
|
4
|
Phantom-based evaluation of yttrium-90 datasets using biograph vision quadra. Eur J Nucl Med Mol Imaging 2023; 50:1168-1182. [PMID: 36504278 PMCID: PMC9931793 DOI: 10.1007/s00259-022-06074-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The image quality characteristics of two NEMA phantoms with yttrium-90 (90Y) were evaluated on a long axial field-of-view (AFOV) PET/CT. The purpose was to identify the optimized reconstruction setup for the imaging of patients with hepatocellular carcinoma after 90Y radioembolization. METHODS Two NEMA phantoms were used, where one had a 1:10 sphere to background activity concentration ratio and the second had cold background. Reconstruction parameters used are as follows: iterations 2 to 8, Gaussian filter 2- to 6-mm full-width-at-half-maximum, reconstruction matrices 440 × 440 and 220 × 220, high sensitivity (HS), and ultra-high sensitivity (UHS) modes. 50-, 40-, 30-, 20-, 10-, and 5-min acquisitions were reconstructed. The measurements included recovery coefficients (RC), signal-to-noise ratio (SNR), background variability, and lung error which measures the residual error in the corrections. Patient data were reconstructed with 20-, 10-, 5-, and 1-min time frames and evaluated in terms of SNR. RESULTS The RC for the hot phantom was 0.36, 0.45, 0.53, 0.63, 0.68, and 0.84 for the spheres with diameters of 10, 13, 17, 22, 28, and 37 mm, respectively, for UHS 2 iterations, a 220 × 220 matrix, and 50-min acquisition. The RC values did not differ with acquisition times down to 20 min. The SNR was the highest for 2 iterations, measured 11.7, 16.6, 17.6, 19.4, 21.9, and 27.7 while the background variability was the lowest (27.59, 27.08, 27.36, 26.44, 30.11, and 33.51%). The lung error was 18%. For the patient dataset, the SNR was 19%, 20%, 24%, and 31% higher for 2 iterations compared to 4 iterations for 20-, 10-, 5-, and 1-min time frames, respectively. CONCLUSIONS This study evaluates the NEMA image quality of a long AFOV PET/CT scanner with 90Y. It provides high RC for the smallest sphere compared to other standard AFOV scanners at shorter scan times. The maximum patient SNR was for 2 iterations, 20 min, while 5 min delivers images with acceptable SNR.
Collapse
|
5
|
Tumor-to-Normal Ratio Relationship between Planning Technetium-99 Macroaggregated Albumin and Posttherapy Yttrium-90 Bremsstrahlung SPECT/CT. J Vasc Interv Radiol 2021; 32:752-760. [PMID: 33642158 DOI: 10.1016/j.jvir.2020.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/25/2020] [Accepted: 12/27/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To quantify the relationship of the tumor-to-normal ratio (TNR) attained from the technetium-99m macroaggregated albumin (MAA) and posttreatment yttrium-90 bremsstrahlung (Y90-Brem) single-photon emission computerized tomography (SPECT)/computer tomography (CT) studies in patients with hepatocellular carcinoma (HCC) treated with glass microspheres. MATERIALS AND METHODS Retrospectively, a total of 190 consecutive patients with HCC who underwent 204 MAA and Y90-Brem SPECT/CT for glass microsphere Y90 radiation segmentectomy (Y90-RS) or lobar treatment (Y90-RLT) between 2013 and 2018 were included. Semi-automated regions-of-interests were drawn around the targeted tumor and nontumoral liver tissue on the SPECT/CT studies. TNR values from MAA and Y90-Brem SPECT/CT were compared using paired t-tests, Pearson correlation, and median with interquartile ranges (IQR). RESULTS The mean TNR for MAA and Y90-Brem SPECT/CT was 2.96 ± 1.86 (median, 2.64; IQR, 2.50) and 2.29 ± 1.10 (median, 2.06; IQR, 1.05), respectively (P < .0001). The mean Y90-RLT TNR was 2.88 ± 1.67 (median, 2.59; IQR, 0.83) and 2.17 ± 0.89 (median, 1.98; IQR, 0.81) for MAA and Y90-Brem SPECT/CT, respectively (P < .0001). The mean Y90-RS TNR was 3.02 ± 2.01 (median, 2.87; IQR, 3.01) and 2.39 ± 1.25 (median, 2.11; IQR, 1.28) for MAA and Y90-Brem SPECT/CT, respectively (P = .0003). TNR attained from MAA and Y90 SPECT/CT studies showed a moderate correlation in a positive linear fashion for the overall (r = 0.54; P < .001), Y90-RLT (r = 0.66, P < .001), and Y90-RS cohorts (r = 0.48, P < .001). CONCLUSIONS The TNR attained from Y90-Brem SPECT/CT is often underestimated, positively correlated, and less variable than that attained from MAA SPECT/CT.
Collapse
|
6
|
Comparison of perfused volume segmentation between cone-beam CT and 99mTc-MAA SPECT/CT for treatment dosimetry before selective internal radiation therapy using 90Y-glass microspheres. Diagn Interv Imaging 2020; 102:45-52. [PMID: 33032960 DOI: 10.1016/j.diii.2020.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/29/2020] [Accepted: 09/10/2020] [Indexed: 02/03/2023]
Abstract
PURPOSE To compare the reliability and accuracy of the pre-treatment dosimetry predictions using cone-beam computed tomography (CBCT) versus 99mTc-labeled macroaggregated albumin (MAA) SPECT/CT for perfused volume segmentation in patients with hepatocellular carcinoma treated by selective internal radiation therapy (SIRT) using 90Y-glass microspheres. MATERIALS AND METHODS Fifteen patients (8 men, 7 women) with a mean age of 68.3±10.5 (SD) years (range: 47-82 years) who underwent a total of 17 SIRT procedures using 90Y-glass microspheres for unresectable hepatocellular carcinoma were retrospectively included. Pre-treatment dosimetry data were calculated from 99mTc-MAA SPECT/CT using either CBCT or 99mTc-MAA SPECT/CT to segment the perfused volumes. Post-treatment dosimetry data were calculated using 90Y imaging (SPECT/CT or PET/CT). The whole liver, non-tumoral liver, and tumor volumes were segmented on CT or MRI data. The mean absorbed doses of the tumor (DT), non-tumoral liver, perfused liver (DPL) and perfused non-tumoral liver were calculated. Intra- and interobserver reliabilities were investigated by calculating Lin's concordant correlation coefficients (ρc values). The differences (biases) between pre- and post-treatment dosimetry data were assessed using the modified Bland-Altman method (for non-normally distributed variables), and systematic bias was evaluated using Passing-Bablok regression. RESULTS The intra- and interobserver reliabilities were good-to-excellent (ρc: 0.80-0.99) for all measures using both methods. Compared with 90Y imaging, the median differences were 5.8Gy (IQR: -12.7; 16.1) and 5.6Gy (IQR: -13.6; 10.2) for DPL-CBCT and DPL-99mTc-MAA SPECT/CT, respectively. The median differences were 1.6Gy (IQR: -29; 7.53) and 9.8Gy (IQR: -28.4; 19.9) for DT-CBCT and DT-99mTc-MAA SPECT/CT respectively. Passing-Bablok regression analysis showed that both CBCT and 99mTc-MAA SPECT/CT had proportional biases and thus tendencies to overestimate DT and DPL at higher post-treatment doses. CONCLUSION CBCT may be a reliable segmentation method, but it does not significantly increase the accuracy of dose prediction compared with that of 99mTc-MAA SPECT/CT. At higher doses both methods tend to overestimate the doses to tumors and perfused livers.
Collapse
|
7
|
Effect of ME Collimator Characteristic, Energy Window Width, and Reconstruction Algorithm Selection on Imaging Performance of Yttrium-90: Simulation Study. Nucl Med Mol Imaging 2019; 53:414-422. [DOI: 10.1007/s13139-019-00619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/24/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022] Open
|
8
|
Abstract
Dosimetry for yttrium-90 radioembolization continues to generate interest and controversy, as multiple approaches have been used effectively. Traditionally, simple formulas primarily based on patients' body weight or perfused liver volume were used. Over the past several years, dosimetry refinements have led to marked improvements in this therapy from both a safety and efficacy standpoint. Technetium-99m macroaggregated albumin single photon emission computed tomography (SPECT) optimizes pretreatment dosimetry to ensure delivery of a therapeutic radiation dose to the tumor while minimizing nontarget radiation to healthy hepatic tissue. Post-treatment yttrium-90 PET utilizing the inherent internal pair production of yttrium-90 accurately calculates the absorbed dose to tumors and to the normal hepatic parenchyma, which correlates with patient outcomes. As dosimetric calculations become more complex, quantitative imaging with Tc-99m SPECT and Y-90 PET may set the new standard for radioembolization dosimetry.
Collapse
Affiliation(s)
- Bashir A Tafti
- Section of Interventional Radiology, Department of Radiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| | - Siddharth A Padia
- Section of Interventional Radiology, Department of Radiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA.
| |
Collapse
|
9
|
Chan KT, Alessio AM, Johnson GE, Vaidya S, Kwan SW, Monsky W, Wilson AE, Lewis DH, Padia SA. Prospective Trial Using Internal Pair-Production Positron Emission Tomography to Establish the Yttrium-90 Radioembolization Dose Required for Response of Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys 2018; 101:358-365. [DOI: 10.1016/j.ijrobp.2018.01.116] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/08/2018] [Accepted: 01/22/2018] [Indexed: 12/16/2022]
|
10
|
Joo I, Kim HC, Kim GM, Paeng JC. Imaging Evaluation Following 90Y Radioembolization of Liver Tumors: What Radiologists Should Know. Korean J Radiol 2018. [PMID: 29520178 PMCID: PMC5840049 DOI: 10.3348/kjr.2018.19.2.209] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Radioembolization using beta-emitting yttrium-90 microspheres is being increasingly used for the treatment of primary and metastatic liver cancers. It is a form of intra-arterial brachytherapy which delivers intense radiation to liver tumors with little embolic effect; this mode of action results in unique post-treatment imaging findings. It is important to understand these imaging findings to avoid misinterpretation of tumor response and to determine further management of the disease. Herein, we discuss the current concepts for assessing tumor response, common post-treatment imaging features, and associated complications following radioembolization.
Collapse
Affiliation(s)
- Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyo-Cheol Kim
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Gyoung Min Kim
- Department of Radiology, Severance Hospital, Seoul 03722, Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
11
|
Li T, Ao ECI, Lambert B, Brans B, Vandenberghe S, Mok GSP. Quantitative Imaging for Targeted Radionuclide Therapy Dosimetry - Technical Review. Theranostics 2017; 7:4551-4565. [PMID: 29158844 PMCID: PMC5695148 DOI: 10.7150/thno.19782] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/25/2017] [Indexed: 01/06/2023] Open
Abstract
Targeted radionuclide therapy (TRT) is a promising technique for cancer therapy. However, in order to deliver the required dose to the tumor, minimize potential toxicity in normal organs, as well as monitor therapeutic effects, it is important to assess the individualized internal dosimetry based on patient-specific data. Advanced imaging techniques, especially radionuclide imaging, can be used to determine the spatial distribution of administered tracers for calculating the organ-absorbed dose. While planar scintigraphy is still the mainstream imaging method, SPECT, PET and bremsstrahlung imaging have promising properties to improve accuracy in quantification. This article reviews the basic principles of TRT and discusses the latest development in radionuclide imaging techniques for different theranostic agents, with emphasis on their potential to improve personalized TRT dosimetry.
Collapse
Affiliation(s)
- Tiantian Li
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Edwin C. I. Ao
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Bieke Lambert
- Dept of Radiology and Nuclear medicine, Ghent University, De Pintelaan 185 9000 Gent, Belgium
- AZ Maria Middelares, Buiten-Ring-Sint-Denijs 30, 9000 Gent, Belgium
| | - Boudewijn Brans
- Dept of Nuclear Medicine, UZ Ghent-Ghent University, St-Pietersnieuwstraat 41, 9000 Gent, Belgium
| | - Stefaan Vandenberghe
- MEDISIP-ELIS-IBITECH-IMEC, Ghent University, St-Pietersnieuwstraat 41, 9000 Gent, Belgium
| | - Greta S. P. Mok
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
12
|
Roshan HR, Mahmoudian B, Gharepapagh E, Azarm A, Pirayesh Islamian J. Collimator and energy window optimization for ⁹⁰Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study. Appl Radiat Isot 2016; 108:124-128. [PMID: 26720261 DOI: 10.1016/j.apradiso.2015.12.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/19/2015] [Accepted: 12/14/2015] [Indexed: 11/25/2022]
Abstract
Treatment efficacy of radioembolization using Yttrium-90 ((90)Y) microspheres is assessed by the (90)Y bremsstrahlung single photon emission computed tomography (SPECT) imaging following radioembolization. The radioisotopic image has the potential of providing reliable activity map of (90)Y microspheres distribution. One of the main reasons of the poor image quality in (90)Y bremsstrahlung SPECT imaging is the continuous and broad energy spectrum of the related bremsstrahlung photons. Furthermore, collimator geometry plays an impressive role in the spatial resolution, sensitivity and image contrast. Due to the relatively poor quality of the (90)Y bremsstrahlung SPECT images, we intend to optimize the medium-energy (ME) parallel-hole collimator and energy window. The Siemens e.cam gamma camera equipped with a ME collimator and a voxelized phantom was simulated by the SImulating Medical Imaging Nuclear Detectors (SIMIND) program. We used the SIMIND Monte Carlo program to generate the (90)Y bremsstrahlung SPECT projection of the digital Jaszczak phantom. The phantom consist of the six hot spheres ranging from 9.5 to 31.8mm in diameter, which are used to evaluate the image contrast. In order to assess the effect of the energy window on the image contrast, three energy windows ranging from 60 to 160 KeV, 160 to 400 KeV, and 60 to 400 KeV were set on a (90)Y bremsstrahlung spectrum. As well, the effect of the hole diameter of a ME collimator on the image contrast and bremsstrahlung spectrum were investigated. For the fixed collimator and septa thickness values (3.28 cm and 1.14 mm, respectively), a hole diameter range (2.35-3.3mm) was chosen based on the appropriate balance between the spatial resolution and sensitivity. The optimal energy window for (90)Y bremsstrahlung SPECT imaging was extended energy window from 60 to 400 KeV. Besides, The optimal value of the hole diameter of ME collimator was obtained 3.3mm. Geometry of the ME parallel-hole collimator and energy window are indeed important indicators of the image quality in (90)Y bremsstrahlung imaging. The obtained optimal ME collimator and optimal energy window have the potential to improve the image contrast of (90)Y bremsstrahlung images. Subsequently, high quality (90)Y bremsstrahlung images can provide reliable estimate of the (90)Y microsphere activity distribution after radioembolization.
Collapse
Affiliation(s)
- Hoda Rezaei Roshan
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Mahmoudian
- Department of Radiology, Radiotherapy and Nuclear Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Gharepapagh
- Department of Radiology, Radiotherapy and Nuclear Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmadreza Azarm
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalil Pirayesh Islamian
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|