1
|
Luna D, Carrasco C, Álvarez D, González C, Egaña JI, Figueroa J. Exploring Anhedonia in Kennelled Dogs: Could Coping Styles Affect Hedonic Preferences for Sweet and Umami Flavours? Animals (Basel) 2020; 10:ani10112087. [PMID: 33187104 PMCID: PMC7696099 DOI: 10.3390/ani10112087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/25/2020] [Accepted: 11/09/2020] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Kennelled dogs are susceptible to suffer chronic stress when social interactions with conspecifics and spatial needs are long-term restricted. Chronic stress may affect pleasure perception of food and solutions in dogs as observed in several animals, a phenomenon known as anhedonia. However, little information exists on how different coping styles could prevent the onset of anhedonia. Fourteen kennelled Beagle dogs were used to study the acceptability and preference for different dilute palatable sucrose and monosodium glutamate (MSG) solutions. Coping style of animals was previously evaluated through a modified human-approach test. This test consisted in assessing whether or not dogs approached an unfamiliar human when a feeding opportunity was presented, classifying them as close dogs (CD; proactive) or distant dogs (DD; reactive) respectively. It was observed that DD presented a lower intake of both sucrose and MSG dilute solutions compared with CD. Moreover, DD exhibited a higher consumption of MSG than CD at the highest concentrations, supporting that their intake depends on solution palatability. Finally, DD did not prefer sucrose or MSG solutions over water at any dilute solution offered. Together, these results suggest that dogs that are categorized as reactive animals could diminish their ability to perceive dilute palatable solutions reflecting depressive-like behaviours such as anhedonia. Abstract Kennelled dogs are at risk of suffering chronic stress due to long-term spatial, social and feeding restrictions. Chronic stress may decrease the dogs’ capacity to feel pleasure when facing hedonic experiences, modifying their perception for palatable ingredients. However, different abilities to cope with environmental stressors could prevent the onset of anhedonia. Fourteen kennelled Beagle dogs were used to study the acceptability and preference for different dilute sucrose and monosodium glutamate (MSG) solutions. Coping style of animals was previously evaluated through a human approach test (HAT) and classified as close dogs (CD; proactive) or distant dogs (DD; reactive) according to whether or not they approached an unfamiliar human when a feeding opportunity was presented. Consumption results were analysed taking into account the sucrose/MSG concentrations, HAT (CD or DD), age, and weight of the animals. DD presented a lower intake of sucrose (p = 0.041) and MSG (p = 0.069) solutions compared with CD. However, DD exhibited a higher consumption of MSG than CD at its highest concentrations, supporting that their intake depends on solution palatability. Finally, DD did not prefer sucrose or MSG solutions over water at any dilute solution offered. Together, these results suggest that dogs that are categorized as reactive animals could diminish their ability to perceive dilute palatable solutions, reflecting depressive-like behaviours as anhedonia.
Collapse
Affiliation(s)
- Daniela Luna
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile;
| | - Carolina Carrasco
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820000, Chile; (C.C.); (D.Á.); (C.G.); (J.I.E.)
| | - Daniela Álvarez
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820000, Chile; (C.C.); (D.Á.); (C.G.); (J.I.E.)
| | - Catalina González
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820000, Chile; (C.C.); (D.Á.); (C.G.); (J.I.E.)
| | - Juan Ignacio Egaña
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago 8820000, Chile; (C.C.); (D.Á.); (C.G.); (J.I.E.)
| | - Jaime Figueroa
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile;
- Correspondence: ; Tel.: +56-223-544-092
| |
Collapse
|
2
|
Wisłowska-Stanek A, Płaźnik A, Kołosowska K, Skórzewska A, Turzyńska D, Liguz-Lęcznar M, Krząścik P, Gryz M, Szyndler J, Sobolewska A, Lehner M. Differences in the dopaminergic reward system in rats that passively and actively behave in the Porsolt test. Behav Brain Res 2018; 359:181-189. [PMID: 30366032 DOI: 10.1016/j.bbr.2018.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
The aim of the study was to assess appetitive responses and central dopaminergic neurotransmission in passive and active rats divided according to their immobility time in the Porsolt swim test and exposed to restraint stress. Passive rats had more episodes of appetitive 50-kHz ultrasonic vocalization (USV) during rat encounter after social isolation and spent significantly more time in the amphetamine-associated context in conditioned place preference test, compared to active rats. Restraint stress decreased sucrose preference, but increased appetitive vocalization and reinforced the conditioned place preference only in passive animals that was associated with increased dopamine concentration in the amygdala. Restraint stress increased also the level of Cocaine- and Amphetamine Regulated Transcript (CART) peptide, a neuromodulator linked to dopamine neurotransmission, in the central nucleus of amygdala, while decreasing it the nucleus accumbens shell in passive rats. In the parvocellular region of paraventricular nucleus of the hypothalamus passive animals had a higher expression of CART compared to passive restraint rats and active control rats. The obtained results show that active and passive rats in the Porsolt test differ significantly in response to appetitive stimuli, which can be additionally changed under stress conditions. The underlying mechanisms are probably associated with differences in dopaminergic activity and CART signaling in reward system.
Collapse
Affiliation(s)
- Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre For Preclinical Research and Technology (CEPT), 1B Banacha Street, 02-097, Warsaw, Poland.
| | - Adam Płaźnik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre For Preclinical Research and Technology (CEPT), 1B Banacha Street, 02-097, Warsaw, Poland; Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Karolina Kołosowska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Monika Liguz-Lęcznar
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Paweł Krząścik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre For Preclinical Research and Technology (CEPT), 1B Banacha Street, 02-097, Warsaw, Poland
| | - Marek Gryz
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre For Preclinical Research and Technology (CEPT), 1B Banacha Street, 02-097, Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| | - Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957, Warsaw, Poland
| |
Collapse
|
4
|
Traynham CJ, Cannavo A, Zhou Y, Vouga AG, Woodall BP, Hullmann J, Ibetti J, Gold JI, Chuprun JK, Gao E, Koch WJ. Differential Role of G Protein-Coupled Receptor Kinase 5 in Physiological Versus Pathological Cardiac Hypertrophy. Circ Res 2015; 117:1001-12. [PMID: 26515328 DOI: 10.1161/circresaha.115.306961] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022]
Abstract
RATIONALE G protein-coupled receptor kinases (GRKs) are dynamic regulators of cellular signaling. GRK5 is highly expressed within myocardium and is upregulated in heart failure. Although GRK5 is a critical regulator of cardiac G protein-coupled receptor signaling, recent data has uncovered noncanonical activity of GRK5 within nuclei that plays a key role in pathological hypertrophy. Targeted cardiac elevation of GRK5 in mice leads to exaggerated hypertrophy and early heart failure after transverse aortic constriction (TAC) because of GRK5 nuclear accumulation. OBJECTIVE In this study, we investigated the role of GRK5 in physiological, swimming-induced hypertrophy (SIH). METHODS AND RESULTS Cardiac-specific GRK5 transgenic mice and nontransgenic littermate control mice were subjected to a 21-day high-intensity swim protocol (or no swim sham controls). SIH and specific molecular and genetic indices of physiological hypertrophy were assessed, including nuclear localization of GRK5, and compared with TAC. Unlike after TAC, swim-trained transgenic GRK5 and nontransgenic littermate control mice exhibited similar increases in cardiac growth. Mechanistically, SIH did not lead to GRK5 nuclear accumulation, which was confirmed in vitro as insulin-like growth factor-1, a known mediator of physiological hypertrophy, was unable to induce GRK5 nuclear translocation in myocytes. We found specific patterns of altered gene expression between TAC and SIH with GRK5 overexpression. Further, SIH in post-TAC transgenic GRK5 mice was able to preserve cardiac function. CONCLUSIONS These data suggest that although nuclear-localized GRK5 is a pathological mediator after stress, this noncanonical nuclear activity of GRK5 is not induced during physiological hypertrophy.
Collapse
Affiliation(s)
- Christopher J Traynham
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Alessandro Cannavo
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Yan Zhou
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Alexandre G Vouga
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Benjamin P Woodall
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Jonathan Hullmann
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Jessica Ibetti
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Jessica I Gold
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - J Kurt Chuprun
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Erhe Gao
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Walter J Koch
- From the Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (C.J.T., A.C., A.G.V., B.P.W., J.H., J.I., J.I.G., J.K.C., E.G., W.J.K.); and Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.).
| |
Collapse
|
5
|
Zanier-Gomes PH, de Abreu Silva TE, Zanetti GC, Benati ÉR, Pinheiro NM, Murta BMT, Crema VO. Depressive behavior induced by social isolation of predisposed female rats. Physiol Behav 2015. [PMID: 26209499 DOI: 10.1016/j.physbeh.2015.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Depression is a mood disorder that is more prevalent in women and has been closely associated with chronic stress. Many models of depression have been suggested that consider different forms of stress. In fact, stress is present in the life of every human being, but only a few develop depression. Accordingly, it seems wrong to consider all stressed animals to be depressed, emphasizing the importance of predisposition for this mood disorder. Based on this finding, we evaluated a predisposition to depressive behavior of female rats on the forced swim test (FST), and the more immobile the animal was during the FST, the more predisposed to depression it was considered to be. Then, animals were subjected to the stress of social isolation for 21 days and were re-evaluated by the FST. The Predisposed/Isolated rats presented higher immobility times. Once all the rats had prior experience in the FST, we calculated an Index of Increase by Isolation, confirming the previous results. Based on this result, we considered the Predisposed/Isolated group as presenting depressive behavior ('Depressed') and the Nonpredisposed/Nonisolated group as the control group ('Nondepressed'). The animals were distributed into 4 new groups: Nondepressed/Vehicle, Nondepressed/Amitriptyline, Depressed/Vehicle, Depressed/Amitriptyline. After 21 days of treatment, only the Depressed/Vehicle group differed from the other 3 groups, demonstrating the efficacy of amitriptyline in treating the depressive behavior of the Depressed animals, validating the model. This study shows that conducting an FST prior to any manipulation can predict predisposition to depressive behavior in female rats and that the social isolation of predisposed animals for 21 days is effective in inducing depressive behavior. This behavior can be considered real depressive behavior because it takes into account predisposition, chronic mild stress, and the prevalent gender.
Collapse
Affiliation(s)
| | | | | | | | - Nanci Mendes Pinheiro
- Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | | | - Virgínia Oliveira Crema
- Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|