1
|
Freyermuth-Trujillo X, Segura-Uribe JJ, Salgado-Ceballos H, Orozco-Barrios CE, Coyoy-Salgado A. Inflammation: A Target for Treatment in Spinal Cord Injury. Cells 2022; 11:2692. [PMID: 36078099 PMCID: PMC9454769 DOI: 10.3390/cells11172692] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a significant cause of disability, and treatment alternatives that generate beneficial outcomes and have no side effects are urgently needed. SCI may be treatable if intervention is initiated promptly. Therefore, several treatment proposals are currently being evaluated. Inflammation is part of a complex physiological response to injury or harmful stimuli induced by mechanical, chemical, or immunological agents. Neuroinflammation is one of the principal secondary changes following SCI and plays a crucial role in modulating the pathological progression of acute and chronic SCI. This review describes the main inflammatory events occurring after SCI and discusses recently proposed potential treatments and therapeutic agents that regulate inflammation after insult in animal models.
Collapse
Affiliation(s)
- Ximena Freyermuth-Trujillo
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico
| | - Julia J. Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City CP 06720, Mexico
| | - Hermelinda Salgado-Ceballos
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
| | - Carlos E. Orozco-Barrios
- CONACyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
| | - Angélica Coyoy-Salgado
- CONACyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
| |
Collapse
|
2
|
Diviccaro S, Cioffi L, Falvo E, Giatti S, Melcangi RC. Allopregnanolone: An overview on its synthesis and effects. J Neuroendocrinol 2022; 34:e12996. [PMID: 34189791 PMCID: PMC9285581 DOI: 10.1111/jne.12996] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022]
Abstract
Allopregnanolone, a 3α,5α-progesterone metabolite, acts as a potent allosteric modulator of the γ-aminobutyric acid type A receptor. In the present review, the synthesis of this neuroactive steroid occurring in the nervous system is discussed with respect to physiological and pathological conditions. In addition, its physiological and neuroprotective effects are also reported. Interestingly, the levels of this neuroactive steroid, as well as its effects, are sex-dimorphic, suggesting a possible gender medicine based on this neuroactive steroid for neurological disorders. However, allopregnanolone presents low bioavailability and extensive hepatic metabolism, limiting its use as a drug. Therefore, synthetic analogues or a different therapeutic strategy able to increase allopregnanolone levels have been proposed to overcome any pharmacokinetic issues.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| |
Collapse
|
3
|
Giatti S, Diviccaro S, Falvo E, Garcia-Segura LM, Melcangi RC. Physiopathological role of the enzymatic complex 5α-reductase and 3α/β-hydroxysteroid oxidoreductase in the generation of progesterone and testosterone neuroactive metabolites. Front Neuroendocrinol 2020; 57:100836. [PMID: 32217094 DOI: 10.1016/j.yfrne.2020.100836] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022]
Abstract
The enzymatic complex 5α-reductase (5α-R) and 3α/3β-hydroxysteroid oxidoreductase (HSOR) is expressed in the nervous system, where it transforms progesterone (PROG) and testosterone (T) into neuroactive metabolites. These metabolites regulate myelination, brain maturation, neurotransmission, reproductive behavior and the stress response. The expression of 5α-R and 3α-HSOR and the levels of PROG and T reduced metabolites show regional and sex differences in the nervous system and are affected by changing physiological conditions as well as by neurodegenerative and psychiatric disorders. A decrease in their nervous tissue levels may negatively impact the course and outcome of some pathological events. However, in other pathological conditions their increased levels may have a negative impact. Thus, the use of synthetic analogues of these steroids or 5α-R modulation have been proposed as therapeutic approaches for several nervous system pathologies. However, further research is needed to fully understand the consequences of these manipulations, in particular with 5α-R inhibitors.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
4
|
Belelli D, Hogenkamp D, Gee KW, Lambert JJ. Realising the therapeutic potential of neuroactive steroid modulators of the GABA A receptor. Neurobiol Stress 2019; 12:100207. [PMID: 32435660 PMCID: PMC7231973 DOI: 10.1016/j.ynstr.2019.100207] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/19/2019] [Indexed: 01/27/2023] Open
Abstract
In the 1980s particular endogenous metabolites of progesterone and of deoxycorticosterone were revealed to be potent, efficacious, positive allosteric modulators (PAMs) of the GABAA receptor (GABAAR). These reports were followed by the discovery that such steroids may be synthesised not only in peripheral endocrine glands, but locally in the central nervous system (CNS), to potentially act as paracrine, or autocrine "neurosteroid" messengers, thereby fine tuning neuronal inhibition. These discoveries triggered enthusiasm to elucidate the physiological role of such neurosteroids and explore whether their levels may be perturbed in particular psychiatric and neurological disorders. In preclinical studies the GABAAR-active steroids were shown to exhibit anxiolytic, anticonvulsant, analgesic and sedative properties and at relatively high doses to induce a state of general anaesthesia. Collectively, these findings encouraged efforts to investigate the therapeutic potential of neurosteroids and related synthetic analogues. However, following over 30 years of investigation, realising their possible medical potential has proved challenging. The recent FDA approval for the natural neurosteroid allopregnanolone (brexanolone) to treat postpartum depression (PPD) should trigger renewed enthusiasm for neurosteroid research. Here we focus on the influence of neuroactive steroids on GABA-ergic signalling and on the challenges faced in developing such steroids as anaesthetics, sedatives, analgesics, anticonvulsants, antidepressants and as treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Delia Belelli
- Systems Medicine, Neuroscience, Mail Box 6, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, United Kingdom
| | - Derk Hogenkamp
- Department of Pharmacology, 110C Med Surge1, Mail Code 4625, University of California, Irvine, School of Medicine, Irvine, CA, 92697, USA
| | - Kelvin W Gee
- Department of Pharmacology, 110C Med Surge1, Mail Code 4625, University of California, Irvine, School of Medicine, Irvine, CA, 92697, USA
| | - Jeremy J Lambert
- Systems Medicine, Neuroscience, Mail Box 6, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, United Kingdom
| |
Collapse
|
5
|
Goudarzvand M, Panahi Y, Yazdani R, Miladi H, Tahmasebi S, Sherafat A, Afraei S, Abouhamzeh K, Jamee M, Al-Hussieni KJMR, Mohammadi H, Mohebbi A, Hossein-Khannazer N, Zaki-Dizaji M, Di Fiore MM, D'Aniello A, Azizi G. The Effects of D-aspartate on Neurosteroids, Neurosteroid Receptors, and Inflammatory Mediators in Experimental Autoimmune Encephalomyelitis. Endocr Metab Immune Disord Drug Targets 2019; 19:316-325. [PMID: 30289086 DOI: 10.2174/1871530318666181005093459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Experimental autoimmune encephalomyelitis (EAE) is a widely used model for multiple sclerosis. The present study has been designed to compare the efficiencies of oral and intraperitoneal (IP) administration of D-aspartate (D-Asp) on the onset and severity of EAE, the production of neurosteroids, and the expression of neurosteroid receptors and inflammatory mediators in the brain of EAE mice. METHODS In this study, EAE was induced in C57BL/6 mice treated with D-Asp orally (D-Asp-Oral) or by IP injection (D-Asp-IP). On the 20th day, brains (cerebrums) and cerebellums of mice were evaluated by histological analyses. The brains of mice were analyzed for: 1) Neurosteroid (Progesterone, Testosterone, 17β-estradiol) concentrations; 2) gene expressions of cytokines and neurosteroid receptors by reverse transcription polymerase chain reaction, and 3) quantitative determination of D-Asp using liquid chromatography-tandem mass spectrometry. Further, some inflammatory cytokines and matrix metalloproteinase-2 (MMP-2) were identified in the mouse serum using enzyme-linked immunosorbent assay kits. RESULTS Our findings demonstrated that after D-Asp was administered, it was taken up and accumulated within the brain. Further, IP injection of D-Asp had more beneficial effects on EAE severity than oral gavage. The concentration of the testosterone and 17β-estradiol in D-Asp-IP group was significantly higher than that of the control group. There were no significant differences in the gene expression of cytokine and neurosteroid receptors between control, D-Asp-IP, and D-Asp-Oral groups. However, IP treatment with D-Asp significantly reduced C-C motif chemokine ligand 2 and MMP-2 serum levels compared to control mice. CONCLUSION IP injection of D-Asp had more beneficial effects on EAE severity, neurosteroid induction and reduction of inflammatory mediators than oral gavage.
Collapse
Affiliation(s)
- Mahdi Goudarzvand
- Department of Physiology and Pharmacology, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Yaser Panahi
- North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Yazdani
- Research Centre for Immunodeficiencies, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Miladi
- Department of Pathology, Imam Khomeini Hospital affiliated to Social Security Organization, Arak, Iran
| | - Saeed Tahmasebi
- Department of Biology, Arak Branch, Islamic Azad University, Arak, Iran
| | - Amin Sherafat
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States
| | - Sanaz Afraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Abouhamzeh
- Research Centre for Immunodeficiencies, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Alborz, Iran
| | | | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohebbi
- Growth and Development Research Centre, Paediatrics Centre of Excellence, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Zaki-Dizaji
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Maddalena Di Fiore
- Universita della Campania "L. Vanvitelli" Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Via Vivaldi 43, 81100, Caserta, Italy
| | - Antimo D'Aniello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", via Vivaldi 43, 81100, Caserta, Italy
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
6
|
Toribio RE. Equine Neonatal Encephalopathy: Facts, Evidence, and Opinions. Vet Clin North Am Equine Pract 2019; 35:363-378. [PMID: 31088699 DOI: 10.1016/j.cveq.2019.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Neonatal encephalopathy (NE) and neonatal maladjustment syndrome (NMS) are terms used for newborn foals that develop noninfectious neurologic signs in the immediate postpartum period. Cerebral ischemia, hypoxia, and inflammation leading to neuronal and glial dysfunction and excitotoxicity are considered key mechanisms behind NE/NMS. Attention has been placed on endocrine and paracrine factors that alter brain cell function. Abnormal steroid concentrations (progestogens, neurosteroids) have been measured in critically ill and NE foals. In addition to supportive treatment, antimicrobials should be considered. Controversies regarding the pathophysiology, diagnosis, and treatment of NE and NMS will remain until controlled mechanistic and therapeutic studies are conducted.
Collapse
Affiliation(s)
- Ramiro E Toribio
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp Street, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Toro-Urrego N, Vesga-Jiménez DJ, Herrera MI, Luaces JP, Capani F. Neuroprotective Role of Hypothermia in Hypoxic-ischemic Brain Injury: Combined Therapies using Estrogen. Curr Neuropharmacol 2019; 17:874-890. [PMID: 30520375 PMCID: PMC7052835 DOI: 10.2174/1570159x17666181206101314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/26/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
Hypoxic-ischemic brain injury is a complex network of factors, which is mainly characterized by a decrease in levels of oxygen concentration and blood flow, which lead to an inefficient supply of nutrients to the brain. Hypoxic-ischemic brain injury can be found in perinatal asphyxia and ischemic-stroke, which represent one of the main causes of mortality and morbidity in children and adults worldwide. Therefore, knowledge of underlying mechanisms triggering these insults may help establish neuroprotective treatments. Selective Estrogen Receptor Modulators and Selective Tissue Estrogenic Activity Regulators exert several neuroprotective effects, including a decrease of reactive oxygen species, maintenance of cell viability, mitochondrial survival, among others. However, these strategies represent a traditional approach of targeting a single factor of pathology without satisfactory results. Hence, combined therapies, such as the administration of therapeutic hypothermia with a complementary neuroprotective agent, constitute a promising alternative. In this sense, the present review summarizes the underlying mechanisms of hypoxic-ischemic brain injury and compiles several neuroprotective strategies, including Selective Estrogen Receptor Modulators and Selective Tissue Estrogenic Activity Regulators, which represent putative agents for combined therapies with therapeutic hypothermia.
Collapse
Affiliation(s)
- Nicolás Toro-Urrego
- Address correspondence to this author at the Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; E-mail:
| | | | | | | | | |
Collapse
|
8
|
Qiu ZK, Liu X, Tang D, Zhang Z, Fan QH, Pan YY, Chen YY, Huang MY, Zhu T, Wang YL, Cheng XF, Chen JS. Cytoprotective effects of paeoniflorin are associated with translocator protein 18 kDa. Biomed Pharmacother 2018; 107:19-23. [PMID: 30075369 DOI: 10.1016/j.biopha.2018.07.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 01/07/2023] Open
Abstract
Paeoniflorin (PF) is one of the important active components in peony that are known to produce the neuroprotective effects. However, the involved cytoprotective factors on brain astrocytes are remain unclear. Translocator protein 18 kDa (TSPO) and its downstream neurosteroids biosynthesis play a significant role in cytoprotection. Based on these, the role of TSPO and neurosteroids biosynthesis in the cytoprotective effects of PF is evaluated. The astrocyte cells were cultured and AC-5216 (TSPO ligand) was selected as the positive control drug. The cytoprotective effects of PF and the levels of neurosteroids were quantified by water-soluble tetrazolium assay and enzyme linked immunosorbent assay, respectively. The cytoprotective activities of PF were relevant to neurosteroids (e.g. progsterone and allopregnanolone) biosynthesis, while these effects were totally blocked by PK11195, trilostane and finasteride, respectively. In summary, the cytoprotective effects of PF maybe mediated by TSPO and neurosteroids biosynthesis. The findings may provide the new insights into the cytoprotective effects of PF.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Xu Liu
- Pharmacy Department of General Hospital of Chinese People's Armed Police Forces, Beijing 100039, PR China
| | - Dan Tang
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Qing-Hong Fan
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yun-Yun Pan
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Ying-Yu Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Mei-Yan Huang
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Tao Zhu
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Yu-Lu Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - Xiao-Fang Cheng
- Tuina and Pain Management Department, Shenzhen LongGang Hospital of Traditional Chinese Medicine (Beijing University of Chinese Medicine Shenzhen Hospital), Shenzhen 518172, PR China.
| | - Ji-Sheng Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China.
| |
Collapse
|
9
|
Bansal R, Singh R. Exploring the potential of natural and synthetic neuroprotective steroids against neurodegenerative disorders: A literature review. Med Res Rev 2017; 38:1126-1158. [PMID: 28697282 DOI: 10.1002/med.21458] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/01/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022]
Abstract
Neurodegeneration is a complex process, which leads to progressive brain damage due to loss of neurons. Despite exhaustive research, the cause of neuronal loss in various degenerative disorders is not entirely understood. Neuroprotective steroids constitute an important line of attack, which could play a major role against the common mechanisms associated with various neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Natural endogenous steroids induce the neuroprotection by protecting the nerve cells from neuronal injury through multiple mechanisms, therefore the structural modifications of the endogenous steroids could be helpful in the generation of new therapeutically useful neuroprotective agents. The review article will keep the readers apprised of the detailed description of natural as well as synthetic neuroprotective steroids from the medicinal chemistry point of view, which would be helpful in drug discovery efforts aimed toward neurodegenerative diseases.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ranjit Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
10
|
A UPLC-MS/MS method for quantification of 5α-androst-3β,5,6β-triol in human plasma: development, validation and its application in clinical pharmacokinetic study. Bioanalysis 2017; 9:873-885. [PMID: 28617033 DOI: 10.4155/bio-2017-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AIM 5α-androst-3β,5,6β-triol is a novel ischemic stroke drug under clinical development. The objective of this study was to develop and validate a simple ultraperformance liquid chromatography tandem mass spectrometry method for 5α-androst-3β,5,6β-triol in human plasma and its application in clinical pharmacokinetic study. Methodology & results: After being pretreated using an automatized solid-phase extraction procedure, plasma sample was separated on a Waters® Acquity™ BEH C18 column (2.1 × 50 mm id, 1.7 mm) by an Acquity UPLC system and detected by an API 5500 triple quadrupole mass spectrometer, which was validated following international guidelines. CONCLUSION A simple method was successfully validated over a concentration range of 2.00-500 ng/ml for 5α-androst-3β,5,6β-triol and applied to investigate its plasma pharmacokinetic profiles in healthy Chinese subjects.
Collapse
|
11
|
Lejri I, Grimm A, Miesch M, Geoffroy P, Eckert A, Mensah-Nyagan AG. Allopregnanolone and its analog BR 297 rescue neuronal cells from oxidative stress-induced death through bioenergetic improvement. Biochim Biophys Acta Mol Basis Dis 2016; 1863:631-642. [PMID: 27979708 DOI: 10.1016/j.bbadis.2016.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/10/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022]
Abstract
Allopregnanolone (AP) is supposed to exert beneficial actions including anxiolysis, analgesia, neurogenesis and neuroprotection. However, although mitochondrial dysfunctions are evidenced in neurodegenerative diseases, AP actions against neurodegeneration-induced mitochondrial deficits have never been investigated. Also, the therapeutic exploitation of AP is limited by its difficulty to pass the liver and its rapid clearance after sulfation or glucuronidation of its 3-hydroxyl group. Therefore, the characterization of novel potent neuroprotective analogs of AP may be of great interest. Thus, we synthesized a set of AP analogs (ANS) and investigated their ability to counteract APP-overexpression-evoked bioenergetic deficits and to protect against oxidative stress-induced death of control and APP-transfected SH-SY5Y cells known as a reliable cellular model of Alzheimer's disease (AD). Especially, we examined whether ANS were more efficient than AP to reduce mitochondrial dysfunctions or bioenergetic decrease leading to neuronal cell death. Our results showed that the ANS BR 297 exhibits notable advantages over AP with regards to both protection of mitochondrial functions and reduction of oxidative stress. Indeed, under physiological conditions, BR 297 does not promote cell proliferation but efficiently ameliorates the bioenergetics by increasing cellular ATP level and mitochondrial respiration. Under oxidative stress situations, BR 297 treatment, which decreases ROS levels, improves mitochondrial respiration and cell survival, appears more potent than AP to protect control and APP-transfected cells against H2O2-induced death. Our findings lend further support to the neuroprotective effects of BR 297 emphasizing this analog as a promising therapeutic tool to counteract age- and AD-related bioenergetic deficits.
Collapse
Affiliation(s)
- Imane Lejri
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France; Neurobiology Laboratory for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular and Cognitive Neuroscience, University of Basel, Wilhelm Klein-Str. 27, 4012 Basel, Switzerland; Psychiatric University Clinics, University of Basel, Wilhelm Klein-Str. 27, 4012 Basel, Switzerland
| | - Amandine Grimm
- Neurobiology Laboratory for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular and Cognitive Neuroscience, University of Basel, Wilhelm Klein-Str. 27, 4012 Basel, Switzerland; Psychiatric University Clinics, University of Basel, Wilhelm Klein-Str. 27, 4012 Basel, Switzerland
| | - Michel Miesch
- Université de Strasbourg, Institut de Chimie - UMR 7177, 1 rue Blaise Pascal, 67008 Strasbourg, France
| | - Philippe Geoffroy
- Université de Strasbourg, Institut de Chimie - UMR 7177, 1 rue Blaise Pascal, 67008 Strasbourg, France
| | - Anne Eckert
- Neurobiology Laboratory for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular and Cognitive Neuroscience, University of Basel, Wilhelm Klein-Str. 27, 4012 Basel, Switzerland; Psychiatric University Clinics, University of Basel, Wilhelm Klein-Str. 27, 4012 Basel, Switzerland
| | - Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France.
| |
Collapse
|
12
|
Contrò V, R. Basile J, Proia P. Sex steroid hormone receptors, their ligands, and nuclear and non-nuclear pathways. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.3.294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|