1
|
Sun C, Liu D, Gao S, Xiu M, Zhang Z. Propofol Ameliorates Spinal Cord Injury Process by Mediating miR-672-3p/TNIP2 Axis. Biochem Genet 2024; 62:4914-4928. [PMID: 38379038 DOI: 10.1007/s10528-024-10718-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024]
Abstract
Propofol has been found to have a protective effect against spinal cord injury (SCI). However, the underlying molecular mechanism of propofol regulating SCI process remains unclear. In this study, lipopolysaccharide (LPS)-induced PC12 cells were used to build SCI cell models. Cell viability and apoptosis were determined by cell counting kit 8 assay, flow cytometry, and caspase-3 activity detection. The protein levels of apoptosis-related markers and TNFAIP3 interacting protein 2 (TNIP2) were assessed using western blot analysis, and the levels of inflammatory factors were detected using ELISA. Cell oxidative stress was evaluated by measuring malondialdehyde (MDA) and reactive oxygen species (ROS) levels. The expression of microRNA (miR)-672-3p was examined by quantitative real-time PCR. SCI rat models were constructed to assess the effect of propofol in vivo. We found that propofol treatment promoted viability, while inhibited apoptosis, inflammation and oxidative stress of LPS-induced PC12 cells. Propofol decreased miR-672-3p expression, and miR-672-3p overexpression eliminated the inhibiting effect of propofol on LPS-induced PC12 cell injury. Besides, miR-672-3p targeted TNIP2, and TNIP2 knockdown reversed the protective effect of miR-672-3p inhibitor or propofol against LPS-induced PC12 cell injury. In vivo experiments, propofol treatment enhanced the motor function recovery and inhibited apoptosis of SCI rat models. In conclusion, propofol increased TNIP2 level by reducing miR-672-3p expression, thereby alleviating LPS-induced PC12 cell injury and improving the motor function of SCI rat models.
Collapse
Affiliation(s)
- Chengliang Sun
- Department of Anesthesiology, the First People's Hospital of Lianyungang, No.182, Tongguan North Road, Haizhou District, Lianyungang, Jiangsu, 222000, China
| | - Dongzhi Liu
- Department of Anesthesiology, the First People's Hospital of Lianyungang, No.182, Tongguan North Road, Haizhou District, Lianyungang, Jiangsu, 222000, China
| | - Shunheng Gao
- Department of Anesthesiology, the First People's Hospital of Lianyungang, No.182, Tongguan North Road, Haizhou District, Lianyungang, Jiangsu, 222000, China
| | - Mingyu Xiu
- Department of Anesthesiology, the First People's Hospital of Lianyungang, No.182, Tongguan North Road, Haizhou District, Lianyungang, Jiangsu, 222000, China
| | - Zhaojian Zhang
- Department of Anesthesiology, the First People's Hospital of Lianyungang, No.182, Tongguan North Road, Haizhou District, Lianyungang, Jiangsu, 222000, China.
| |
Collapse
|
2
|
Abraham M, Shalom M, Gold J, Seaton M, Maleski Smith A, Gendreau J, Brandel MG, Ciacci J. Stem Cells in the Treatment of Spinal Cord Injury: A Review of Currently Registered Clinical Trials. World Neurosurg 2024; 191:e116-e125. [PMID: 39159672 DOI: 10.1016/j.wneu.2024.08.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) affects around 18,000 individuals annually, representing nearly one-third of all paralysis cases. Stem cell therapy, a focal point in contemporary neuroregeneration research for SCI treatment, holds potential in leveraging undifferentiated stem cells to regenerate damaged tissues. This study seeks to comprehensively analyze current clinical trials exploring the potential use of stem cells in treating spinal cord injuries. METHODS A data retrieval approach examined the ClinicalTrials.gov database using the terms "spinal cord injury" and "stem cells." Exclusion criteria eliminated studies not recruiting, terminated prematurely, suspended, withdrawn, or of unknown status. Data for each trial, including ClinicalTrial.gov NCT identifier, title, intervention details, initiation/completion dates, and sample size, were systematically collected. Literature searches on PubMed.gov were conducted for completed trials with results. RESULTS Thirty clinical trials were analyzed, with 20 completed and six with published results on PubMed.gov. Interventions included 20 biological (66.7%), 6 procedural (20%), and 4 drug interventions (13.3%). Stem cell sources varied, including bone marrow (46.7%), umbilical cells (20%), adipose tissue (20%), embryonic cells (6.7%), and neural cells (6.7%). Trials spanned 2005 to 2022, with 11 (36.7%) commencing in or after 2017. Among six trials with results, 50% used bone marrow-derived stem cells. CONCLUSIONS The promising potential of stem cells in neuroregenerative SCI treatment necessitates further exploration through large-scale, multicenter clinical trials to enhance understanding and guide wider adoption of this emerging treatment paradigm.
Collapse
Affiliation(s)
- Mickey Abraham
- Department of Neurosurgery, University of California San Diego, La Jolla, California, USA.
| | - Moshe Shalom
- Tel Aviv University Sackler School of Medicine, Tel Aviv, Israel
| | - Justin Gold
- Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Margaret Seaton
- University of California San Diego School of Medicine, San Diego, California, USA
| | | | - Julian Gendreau
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael G Brandel
- Department of Neurosurgery, University of California San Diego, La Jolla, California, USA
| | - Joseph Ciacci
- Department of Neurosurgery, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Wang D, Wu Y, Liu Y, Ji Q, Luo Y, Yan J. Dysregulated MiR-223-5p Modulates Inflammation and Oxidative Stress in Traumatic Spinal Cord Injury. Immunol Invest 2024; 53:947-961. [PMID: 38814140 DOI: 10.1080/08820139.2024.2359531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
AIM This study aimed to evaluate the miR-223-5p expression in patients with spinal cord injury (SCI) and to determine its role in the pathogenesis of SCI. METHODS The serum miR-223-5p levels were analyzed using quantitative real-time polymerase chain reaction. The diagnostic accuracy of miR-223-5p was evaluated using the receiving operating characteristic curves. LPS-induced PC12 cells were established as an in vitro inflammatory cell model. Cell apoptosis, inflammation and oxidative stress were examined. The SCI rat model was constructed to evaluate the effects of miR-223-5p on inflammatory response and motor function in rats. RESULTS MiR-223-5p expression was upregulated in SCI patients. MiR-223-5p expression in the complete SCI group was significantly higher than that in incomplete SCI group. ROC analysis showed that miR-223-5p can distinguish SCI patients from healthy volunteers. In vitro experiments demonstrated that LPS upregulated apoptosis and inflammation in PC12 cells. Treatment with miR-223-5p inhibitor alleviated the changes in LPS-induced PC12 cells . Inhibition of miR-223-5p can alleviate the activation of inflammatory response and the effects of SCI on the motor function in rats. CONCLUSIONS MiR-223-5p is a potential diagnostic marker for SCI, and it can promote the SCI progression by regulating nerve cell survival, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Orthopedics, Zhangjiakou First Hospital, Zhangjiakou, Hebei, China
| | - Yingshuang Wu
- Department of Paediatrics, Zhangjiakou First Hospital, Zhangjiakou, Hebei, China
| | - Yongxiang Liu
- Department of Orthopedics, Yantaishan Hospital, Yantai, Shandong, China
| | - Qinghui Ji
- Department of Orthopedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yi Luo
- Department of Orthopedics, Zhangjiakou First Hospital, Zhangjiakou, Hebei, China
| | - Jinglong Yan
- Department of Orthopedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Sanie-Jahromi F, Sanie Jahromi MS. In Vitro Effect of Propofol on the Expression of Genes Involved in Inflammation and Apoptosis in Corneal Activated Keratocytes. Cornea 2024; 43:105-110. [PMID: 37702602 DOI: 10.1097/ico.0000000000003378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/03/2023] [Indexed: 09/14/2023]
Abstract
PURPOSE We investigated the effect of propofol (0.5, 5, and 50 μM) on the gene expression of inflammatory cytokines [ IL-1β , IL-6 , transforming growth factor β ( TGF-β ), and LIF ] and apoptosis process ( BCL-2 and Bax ) in corneal activated keratocytes (CAKs). METHODS CAKs (10 6 cells/10 cm 2 ) were exposed to propofol at a concentration of 0.5, 5, and 50 μM for 24 hours at 37°C. The control group did not receive propofol at the same time or under the same condition. Ribonucleic acid (RNA) extraction, complementary DNA (cDNA) synthesis, and real-time polymerase chain reaction (PCR) were performed to quantify the relative expression of IL-1β , IL-6 , TGF-β , LIF , BCL-2 , and Bax expression in the treated versus control cells. RESULT The results of this study showed that propofol treatment (0.5 and 5 μM) led to the downregulation of IL-1β and IL-6 gene expression in CAKs. TGF-β (with a role in fibrogenesis) was not changed in 0.5 and 5 μM propofol-treated CAKs, whereas CAKs treated with 50 μM propofol showed upregulation of the TGF-β gene. LIF (with a role in regeneration) was upregulated in 0.5 and 5 μM propofol-treated CAKs. The BCL-2/Bax ratio (as the antiapoptosis index) was increased in CAKs treated with 0.5 μM propofol and indicated the induction of an antiapoptotic effect. CONCLUSIONS We showed that CAKs treatment with propofol, at concentrations of 0.5 and 5 μM, could decrease the expression of genes related to inflammation and enhance the genes associated with cell regeneration. While 50 μM propofol treatment might induce CAK fibrogenesis. This proof-of-concept study could preserve a groundwork for future drug design for the treatment of corneal stromal diseases and ocular regenerative medicine.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Department of Ophthalmology, Poostchi Ophthalmology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Universal Scientific Education and Research Network (USERN), Shiraz, Iran; and
| | | |
Collapse
|
5
|
Yuan L, Xu J, Qin F, Yi X, Zhong Z, Gu X, Gong G. USP18 overexpression protects against spinal cord ischemia/reperfusion injury via regulating autophagy. Neurosci Lett 2023; 810:137359. [PMID: 37356565 DOI: 10.1016/j.neulet.2023.137359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Spinal cord ischemia-reperfusion injury (SCII) is usually caused by spinal surgery, often leading to severe neurological deficits. The ubiquitin-specific protease 18 (USP18) plays a significant role in neurological diseases. OBJECTIVE The present study was designed to assess the effects and mechanisms of USP18 on SCII. METHODS By inducing transient aortic occlusion and subsequent reperfusion, a rat model of SCII was successfully established. The Basso-Beattie-Bresnahan scores, the inclined plane test, and hematoxylin and eosin (HE) were used to measure locomotor activity and histological changes in the injured spinal cords. Moreover, the SCII cell model was established using PC12 cells under oxygen-glucose deprivation and reoxygenation (OGD/R). Proinflammatory factors (TNF-α, IL-6, and INF-α) were examined using an ELISA kit. Cell apoptosis was assessed by Annexin V-FITC/PI double-staining and TUNEL assays. Western blot was used to detect the expression levels of proteins related to apoptosis and autophagy. RESULTS USP18 expression was decreasedin vivo and in vitro SCII models. The upregulation of USP18 ameliorated hind limbs' motor function, inhibiting inflammation and apoptosis after SCII in rats. USP18 overexpression in vitro may protect PC12 cells from OGD/R-induced damage by modulating inflammatory responses and apoptosis. Moreover, Overexpression of USP18 enhanced autophagy to inhibit cell apoptosis induced by SCII in vivo and in vitro. CONCLUSIONS In summary, USP18 overexpression protects against SCII via regulating autophagy.
Collapse
Affiliation(s)
- Libang Yuan
- Department of Anesthesia, People's Liberation Army The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Jin Xu
- School of Electrical Engineering and Information, Southwest Petroleum University, Chengdu, Sichuan 610083, China
| | - Fuen Qin
- Department of Anesthesia, People's Liberation Army The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Xiaobo Yi
- Department of Anesthesia, People's Liberation Army The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Zuling Zhong
- Department of Anesthesia, People's Liberation Army The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Xiaoping Gu
- Department of Anesthesia, People's Liberation Army The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China
| | - Gu Gong
- Department of Anesthesia, People's Liberation Army The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, China.
| |
Collapse
|
6
|
Huang LY, Sun X, Pan HX, Wang L, He CQ, Wei Q. Cell transplantation therapies for spinal cord injury focusing on bone marrow mesenchymal stem cells: Advances and challenges. World J Stem Cells 2023; 15:385-399. [PMID: 37342219 PMCID: PMC10277963 DOI: 10.4252/wjsc.v15.i5.385] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 05/26/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition with complex pathological mechanisms that lead to sensory, motor, and autonomic dysfunction below the site of injury. To date, no effective therapy is available for the treatment of SCI. Recently, bone marrow-derived mesenchymal stem cells (BMMSCs) have been considered to be the most promising source for cellular therapies following SCI. The objective of the present review is to summarize the most recent insights into the cellular and molecular mechanism using BMMSC therapy to treat SCI. In this work, we review the specific mechanism of BMMSCs in SCI repair mainly from the following aspects: Neuroprotection, axon sprouting and/or regeneration, myelin regeneration, inhibitory microenvironments, glial scar formation, immunomodulation, and angiogenesis. Additionally, we summarize the latest evidence on the application of BMMSCs in clinical trials and further discuss the challenges and future directions for stem cell therapy in SCI models.
Collapse
Affiliation(s)
- Li-Yi Huang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Xin Sun
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Hong-Xia Pan
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Lu Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Cheng-Qi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| |
Collapse
|
7
|
Kaur J, Mojumdar A. A mechanistic overview of spinal cord injury, oxidative DNA damage repair and neuroprotective therapies. Int J Neurosci 2023; 133:307-321. [PMID: 33789065 DOI: 10.1080/00207454.2021.1912040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite substantial development in medical treatment strategies scientists are struggling to find a cure against spinal cord injury (SCI) which causes long term disability and paralysis. The prime rationale behind it is the enlargement of primary lesion due to an initial trauma to the spinal cord which spreads to the neighbouring spinal tissues It begins from the time of traumatic event happened and extends to hours and even days. It further causes series of biological and functional alterations such as inflammation, excitotoxicity and ischemia, and promotes secondary lesion to the cord which worsens the life of individuals affected by SCI. Oxidative DNA damage is a stern consequence of oxidative stress linked with secondary injury causes oxidative base alterations and strand breaks, which provokes cell death in neurons. It is implausible to stop primary damage however it is credible to halt the secondary lesion and improve the quality of the patient's life to some extent. Therefore it is crucial to understand the hidden perspectives of cell and molecular biology affecting the pathophysiology of SCI. Thus the focus of the review is to connect the missing links and shed light on the oxidative DNA damages and the functional repair mechanisms, as a consequence of the injury in neurons. The review will also probe the significance of neuroprotective strategies in the present scenario. HIGHLIGHTSSpinal cord injury, a pernicious condition, causes excitotoxicity and ischemia, ultimately leading to cell death.Oxidative DNA damage is a consequence of oxidative stress linked with secondary injury, provoking cell death in neurons.Base excision repair (BER) is one of the major repair pathways that plays a crucial role in repairing oxidative DNA damages.Neuroprotective therapies curbing SCI and boosting BER include the usage of pharmacological drugs and other approaches.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Neuroscience, University of Copenhagen, Copenhagen N, Denmark
| | - Aditya Mojumdar
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Muthu S, Saravanakumar TP, Ganie PA, Yadav V, Baghel PK, Jeyaraman M. Thematic trend mapping and hotspot analysis in bone marrow aspirate concentrate therapy: A scientometric literature analysis and advances in osteoarthritis. Cytotherapy 2022; 24:445-455. [PMID: 35190268 DOI: 10.1016/j.jcyt.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/05/2021] [Accepted: 01/13/2022] [Indexed: 02/05/2023]
Abstract
Bone marrow aspirate concentrate (BMAC) therapy has been spotlighted as a promising regenerative tool with its abundant source of mesenchymal stromal cells (MSCs) and growth factors. The spectrum of the utility of BMAC therapy has been expanding day by day to harness the potential for varied therapeutic purposes. In the due course of its evolution, it is often essential to have a comprehensive summary of progress to have a greater understanding and refine our future directives. With technological developments such as data mining, graphic drawing and information analytics combined with computational statistics, visualization of scientific metrology has become a reality. With this newer perspective, we intend to use scientometric tools including text mining, cocitation analysis, keyword analysis and cluster network analysis to perform thematic trend mapping and hotspot analysis of the literature on BMAC therapy and evaluate its progress in the management of osteoarthritis.
Collapse
Affiliation(s)
- Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul, Tamil Nadu, India; Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India; Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India
| | - T P Saravanakumar
- Department of Orthopaedics, Government Medical College and Hospital, Karur, Tamil Nadu, India
| | - Parvez Ahmad Ganie
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India; Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vijendra Yadav
- Department of Orthopaedics, Sanjay Gandhi Institute of Trauma & Orthopaedics, Bengaluru, Karnataka, India
| | - Purushottam Kumar Baghel
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India; Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow, Uttar Pradesh, India
| | - Madhan Jeyaraman
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India; Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, India; Department of Orthopaedics, Faculty of Medicine - Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, India.
| |
Collapse
|
9
|
Choi EJ, Kim CH, Yoon JY, Kim JY, Kim HS, Yoon JU, Cho AR, Kim EJ. Propofol attenuates odontogenic/osteogenic differentiation of human dental pulp stem cells in vitro. J Dent Sci 2022; 17:1604-1611. [PMID: 36299329 PMCID: PMC9588817 DOI: 10.1016/j.jds.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/07/2022] [Indexed: 11/11/2022] Open
Abstract
Background/purpose Various studies have used stem cells in the field of bone tissue engineering to repair bone defects. Dental pulp stem cells (DPSCs) have multipotent properties and can be acquired in a noninvasive manner; therefore, they are frequently used in experiments in regenerative medicine. The objective of this study was to investigate the odontogenic/osteogenic differentiation of human DPSCs (hDPSCs) using propofol, a widely used intravenous anesthetic agent. Materials and methods Alkaline phosphatase (ALP) staining was used to investigate the effects of various concentrations of propofol (5, 20, 50 and 100 μM) on the osteogenic differentiation of hDPSCs. Real-time qPCR and Western blot analysis were used to detect the effect of propofol on the expression of odontogenic/osteogenic genes, such as DMP1, RUNX2, OCN, and BMP2. Odontogenic/osteogenic differentiation of hDPSCs was estimated at days 7 and 14. Results ALP staining of hDPSCs was significantly decreased by propofol treatment. The mRNA expression of DMP1, RUNX2, OCN, and BMP2 decreased after propofol treatment for 14 days. The protein expression of DMP1 and BMP2 was decreased by propofol at days 7 and 14, and that of RUNX2 was decreased by propofol at day 14 only. Conclusion Propofol attenuated odontogenic/osteogenic differentiation of hDPSCs in vitro. This result suggests that propofol, which is widely used for dental sedation, may inhibit the odontogenic/osteogenic differentiation of hDPSCs.
Collapse
|
10
|
Abstract
Traumatic spinal cord injury (SCI) results in direct and indirect damage to neural tissues, which results in motor and sensory dysfunction, dystonia, and pathological reflex that ultimately lead to paraplegia or tetraplegia. A loss of cells, axon regeneration failure, and time-sensitive pathophysiology make tissue repair difficult. Despite various medical developments, there are currently no effective regenerative treatments. Stem cell therapy is a promising treatment for SCI due to its multiple targets and reactivity benefits. The present review focuses on SCI stem cell therapy, including bone marrow mesenchymal stem cells, umbilical mesenchymal stem cells, adipose-derived mesenchymal stem cells, neural stem cells, neural progenitor cells, embryonic stem cells, induced pluripotent stem cells, and extracellular vesicles. Each cell type targets certain features of SCI pathology and shows therapeutic effects via cell replacement, nutritional support, scaffolds, and immunomodulation mechanisms. However, many preclinical studies and a growing number of clinical trials found that single-cell treatments had only limited benefits for SCI. SCI damage is multifaceted, and there is a growing consensus that a combined treatment is needed.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Chenying Fu
- State Key Laboratory of Biotherapy, 34753West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Xiong
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Quan Wei
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| |
Collapse
|
11
|
Jevans B, James ND, Burnside E, McCann CJ, Thapar N, Bradbury EJ, Burns AJ. Combined treatment with enteric neural stem cells and chondroitinase ABC reduces spinal cord lesion pathology. Stem Cell Res Ther 2021; 12:10. [PMID: 33407795 PMCID: PMC7789480 DOI: 10.1186/s13287-020-02031-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) presents a significant challenge for the field of neurotherapeutics. Stem cells have shown promise in replenishing the cells lost to the injury process, but the release of axon growth-inhibitory molecules such as chondroitin sulfate proteoglycans (CSPGs) by activated cells within the injury site hinders the integration of transplanted cells. We hypothesised that simultaneous application of enteric neural stem cells (ENSCs) isolated from the gastrointestinal tract, with a lentivirus (LV) containing the enzyme chondroitinase ABC (ChABC), would enhance the regenerative potential of ENSCs after transplantation into the injured spinal cord. METHODS ENSCs were harvested from the GI tract of p7 rats, expanded in vitro and characterised. Adult rats bearing a contusion injury were randomly assigned to one of four groups: no treatment, LV-ChABC injection only, ENSC transplantation only or ENSC transplantation+LV-ChABC injection. After 16 weeks, rats were sacrificed and the harvested spinal cords examined for evidence of repair. RESULTS ENSC cultures contained a variety of neuronal subtypes suitable for replenishing cells lost through SCI. Following injury, transplanted ENSC-derived cells survived and ChABC successfully degraded CSPGs. We observed significant reductions in the injured tissue and cavity area, with the greatest improvements seen in the combined treatment group. ENSC-derived cells extended projections across the injury site into both the rostral and caudal host spinal cord, and ENSC transplantation significantly increased the number of cells extending axons across the injury site. Furthermore, the combined treatment resulted in a modest, but significant functional improvement by week 16, and we found no evidence of the spread of transplanted cells to ectopic locations or formation of tumours. CONCLUSIONS Regenerative effects of a combined treatment with ENSCs and ChABC surpassed either treatment alone, highlighting the importance of further research into combinatorial therapies for SCI. Our work provides evidence that stem cells taken from the adult gastrointestinal tract, an easily accessible source for autologous transplantation, could be strongly considered for the repair of central nervous system disorders.
Collapse
Affiliation(s)
- Benjamin Jevans
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
- Present Address: German Centre for Neurodegenerative diseases (DZNE), Bonn, Germany
| | - Nicholas D James
- Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Guy's Campus, London, UK
| | - Emily Burnside
- Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Guy's Campus, London, UK
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
- Neurogastroenterology and Motility Unit, Department of Gastroenterology, Great Ormond Street Hospital, London, UK
- Present Address: Department of Paediatric Gastroenterology, Hepatology and Liver Transplant, Queensland Children's Hospital, Brisbane, Australia
| | - Elizabeth J Bradbury
- Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Guy's Campus, London, UK
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK.
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
- Present Address: Gastrointestinal Drug Discovery Unit, Takeda Pharmaceuticals International, Cambridge, USA.
| |
Collapse
|
12
|
Progress in Stem Cell Therapy for Spinal Cord Injury. Stem Cells Int 2020; 2020:2853650. [PMID: 33204276 PMCID: PMC7661146 DOI: 10.1155/2020/2853650] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Spinal cord injury (SCI) is one of the serious neurological diseases that occur in young people with high morbidity and disability. However, there is still a lack of effective treatments for it. Stem cell (SC) treatment of SCI has gradually become a new research hotspot over the past decades. This article is aimed at reviewing the research progress of SC therapy for SCI. Methods Review the literature and summarize the effects, strategies, related mechanisms, safety, and clinical application of different SC types and new approaches in combination with SC in SCI treatment. Results A large number of studies have focused on SC therapy for SCI, most of which showed good effects. The common SC types for SCI treatment include mesenchymal stem cells (MSCs), hematopoietic stem cells (HSCs), neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs). The modes of treatment include in vivo and in vitro induction. The pathways of transplantation consist of intravenous, transarterial, nasal, intraperitoneal, intrathecal, and intramedullary injections. Most of the SC treatments for SCI use a number of cells ranging from tens of thousands to millions. Early or late SC administration, application of immunosuppressant or not are still controversies. Potential mechanisms of SC therapy include tissue repair and replacement, neurotrophy, and regeneration and promotion of angiogenesis, antiapoptosis, and anti-inflammatory. Common safety issues include thrombosis and embolism, tumorigenicity and instability, infection, high fever, and even death. Recently, some new approaches, such as the pharmacological activation of endogenous SCs, biomaterials, 3D print, and optogenetics, have been also developed, which greatly improved the application of SC therapy for SCI. Conclusion Most studies support the effects of SC therapy on SCI, while a few studies do not. The cell types, mechanisms, and strategies of SC therapy for SCI are very different among studies. In addition, the safety cannot be ignored, and more clinical trials are required. The application of new technology will promote SC therapy of SCI.
Collapse
|
13
|
Suppression of miR-10a-5p in bone marrow mesenchymal stem cells enhances the therapeutic effect on spinal cord injury via BDNF. Neurosci Lett 2019; 714:134562. [PMID: 31626878 DOI: 10.1016/j.neulet.2019.134562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/28/2019] [Accepted: 10/14/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUNDS/AIMS Brain-derived neurotrophic factor (BDNF) plays a primary role in the maturation, proliferation, and differentiation of neuronal cells, can induce bone-marrow-derived mesenchymal stem cells (MSCs) to differentiate into nerve cells. This study aims to explore whether regulation of BDNF through microRNAs (miRNAs) in MSCs may further enhance the therapeutic effect on spinal cord injury (SCI). METHODS Bioinformatics analyses were done to predict miRNAs that target BDNF in MSCs. Dual-luciferase reporter gene assays were performed to verify the target relationship between microRNA and BDNF. We examined the mRNA and protein levels of BDNF in MSCs by RT-qPCR and Western blot, respectively. CCK 8 assay was chosen to assess cell viability. MSCs were transduced with miR-10a-5p-ASO, which were transplanted into rats that underwent SCI. The tissue integrity percentage, cavity volume, and Basso-Beattie-Bresnahan (BBB) scale were assessed. Neurofilament (NF) was detected using immunohistochemistry. Histological features of spinal cord tissues examined following HE staining. RESULTS MiR-10a-5p inhibited protein translation of BDNF, through binding to the 3'-UTR of the BDNF. MSCs transduced with MiR-10a-5p-ASO further increased the tissue integrity percentage, decreased cavity volume, and enhanced the recovery of BBB score in SCI model rats, compared to control MSCs. CONCLUSION Upregulation of BDNF by miR-10a-5p suppression in MSCs further improve the therapeutic potential of MSCs in treating SCI in rats.
Collapse
|
14
|
Lentivirus-mediated silencing of the PTC1 and PTC2 genes promotes recovery from spinal cord injury by activating the Hedgehog signaling pathway in a rat model. Exp Mol Med 2017; 49:e412. [PMID: 29244790 PMCID: PMC5750477 DOI: 10.1038/emm.2017.220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/02/2017] [Accepted: 06/25/2017] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate the effect of Patched-1 (PTC1) and PTC2 silencing in a rat model, on Hedgehog (Hh) pathway-mediated recovery from spinal cord injury (SCI). An analytical emphasis on the relationship between the sonic hedgehog (Shh) pathway and nerve regeneration was explored. A total of 126 rats were divided into normal, sham, SCI, negative control (NC), PTC1-RNAi, PTC2-RNAi and PTC1/PTC2-RNAi groups. The Basso, Beattie and Bresnahan (BBB) scale was employed to assess hind limb motor function. Quantitative real-time polymerase chain reaction and western blotting were performed to examine the mRNA and protein levels of PTC1, PTC2, Shh, glioma-associated oncogene homolog 1 (Gli-1), Smo and Nestin. Tissue morphology was analyzed using immunohistochemistry, and immunofluorescent staining was conducted to detect neurofilament protein 200 (NF-200) and glial fibrillary acidic protein (GFAP). The PTC1/PTC2-RNAi group displayed higher BBB scores than the SCI and NC groups. Shh, Gli-1, Smo and Nestin expression levels were elevated in the PTC1/PTC2-RNAi group. PTC1 and PTC2 mRNA and protein expression was lower in the PTC1/PTC2-RNAi group than in the normal, sham and SCI groups. Among the seven groups, the PTC1/PTC2-RNAi group had the largest positive area of NF-200 staining, whereas the SCI group exhibited a larger GFAP-positive area than both the normal and the sham groups. The Shh pathway may provide new insights into therapeutic indications and regenerative recovery tools for the treatment of SCI. Activation of the Hh signaling pathway by silencing PTC1 and PTC2 may reduce inflammation and may ultimately promote SCI recovery.
Collapse
|
15
|
Xie LJ, Huang JX, Yang J, Yuan F, Zhang SS, Yu QJ, Hu J. Propofol protects against blood-spinal cord barrier disruption induced by ischemia/reperfusion injury. Neural Regen Res 2017; 12:125-132. [PMID: 28250758 PMCID: PMC5319217 DOI: 10.4103/1673-5374.199004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Propofol has been shown to exert neuroprotective effects on the injured spinal cord. However, the effect of propofol on the blood-spinal cord barrier (BSCB) after ischemia/reperfusion injury (IRI) is poorly understood. Therefore, we investigated whether propofol could maintain the integrity of the BSCB. Spinal cord IRI (SCIRI) was induced in rabbits by infrarenal aortic occlusion for 30 minutes. Propofol, 30 mg/kg, was intravenously infused 10 minutes before aortic clamping as well as at the onset of reperfusion. Then, 48 hours later, we performed histological and mRNA/protein analyses of the spinal cord. Propofol decreased histological damage to the spinal cord, attenuated the reduction in BSCB permeability, downregulated the mRNA and protein expression levels of matrix metalloprotease-9 (MMP-9) and nuclear factor-κB (NF-κB), and upregulated the protein expression levels of occludin and claudin-5. Our findings suggest that propofol helps maintain BSCB integrity after SCIRI by reducing MMP-9 expression, by inhibiting the NF-κB signaling pathway, and by maintaining expression of tight junction proteins.
Collapse
Affiliation(s)
- Li-Jie Xie
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Jin-Xiu Huang
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Jian Yang
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Fen Yuan
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Shuang-Shuang Zhang
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Qi-Jing Yu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Ji Hu
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| |
Collapse
|
16
|
Akpancar S, Tatar O, Turgut H, Akyildiz F, Ekinci S. The Current Perspectives of Stem Cell Therapy in Orthopedic Surgery. ARCHIVES OF TRAUMA RESEARCH 2016; 5:e37976. [PMID: 28144608 PMCID: PMC5253188 DOI: 10.5812/atr.37976] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 12/26/2022]
Abstract
CONTEXT Musculoskeletal injuries may be painful, troublesome, life limiting and also one of the global health problems. There has been considerable amount of interest during the past two decades to stem cells and tissue engineering techniques in orthopedic surgery, especially to manage special and compulsive injuries within the musculoskeletal system. EVIDENCE ACQUISITION The aim of this study was to present a literature review regarding the most recent progress in stem cell procedures and current indications in orthopedics clinical care practice. The Medline and PubMed library databases were searched for the articles related with stem cell procedures in the field of orthopedic surgery and additionally the reference list of each article was also included to provide a comprehensive evaluation. RESULTS Various sources of stem cells have been studied for orthopedics clinical care practice. Stem cell therapy has successfully used for major orthopedic procedures in terms of bone-joint injuries (fractures-bone defects, nonunion, and spinal injuries), osteoarthritis-cartilage defects, ligament-tendon injuries, femoral head osteonecrosis and osteogenesis imperfecta. Stem cells have also used in bone tissue engineering in combining with the scaffolds and provided faster and better healing of tissues. CONCLUSIONS Large amounts of preclinical studies have been made of stem cells and there is an increasing interest to perform these studies within the human population but preclinical studies are insufficient; therefore, much more and efficient studies should be conducted to evaluate the efficacy and safety of stem cells.
Collapse
Affiliation(s)
- Serkan Akpancar
- Department of Orthopedic Surgery, Gulhane Military Hospital, Ankara, Turkey
- Corresponding author: Serkan Akpancar, Department of Orthopedic Surgery, Gulhane Military Medicine Academy, Ankara, Turkey. Tel: +90-5443229700, Fax: +90-3124045500, E-mail:
| | - Oner Tatar
- Department of Orthopedic Surgery, Air Force Academy Kasımpaşa Military Hospital, Istanbul, Turkey
| | - Hasan Turgut
- Department of Orthopedic Surgery, Bursa Military Hospital, Bursa, Turkey
| | - Faruk Akyildiz
- Department of Orthopedic Surgery, Gulhane Military Hospital, Ankara, Turkey
| | - Safak Ekinci
- Department of Orthopedic Surgery, Agri Military Hospital, Agri, Turkey
| |
Collapse
|