1
|
Coppola VJ, Scribner HR, Barnett C, Flanigan KAS, Riesgo VR, Bingman VP. Age-related reductions in whole brain mass and telencephalon volume in very old white Carneau pigeons (Columba livia). Neurosci Lett 2024; 828:137754. [PMID: 38556244 DOI: 10.1016/j.neulet.2024.137754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
While studies have identified age-related cognitive impairment in pigeons (Columba livia), no study has detected the brain atrophy which typically accompanies cognitive impairment in older mammals. Instead, Coppola and Bingman (Aging is associated with larger brain mass and volume in homing pigeons (Columba livia), Neurosci. Letters 698 (2019) 39-43) reported increased whole brain mass and telencephalon volume in older, compared to younger, homing pigeons. One reason for this unexpected finding might be that the older pigeons studied were not old enough to display age-related brain atrophy. Therefore, the current study repeated Coppola and Bingman, but with a sample of older white Carneau pigeons that were on average 5.34 years older. Brains from young and old homing pigeons were weighed and orthogonal measurements of the telencephalon, cerebellum, and optic tectum were obtained. Despite having a heavier body mass than younger pigeons, older pigeons had a significant reduction in whole brain mass and telencephalon volume, but not cerebellum or optic tectum volume. This study is therefore the first to find that pigeons experience age-related brain atrophy.
Collapse
Affiliation(s)
- Vincent J Coppola
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA.
| | - Holden R Scribner
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Caillie Barnett
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Kaylyn A S Flanigan
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, USA.
| | - Victoria R Riesgo
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, USA.
| | - Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, USA.
| |
Collapse
|
2
|
Mehlhorn J, Niski N, Liu K, Caspers S, Amunts K, Herold C. Regional Patterning of Adult Neurogenesis in the Homing Pigeon’s Brain. Front Psychol 2022; 13:889001. [PMID: 35898980 PMCID: PMC9311432 DOI: 10.3389/fpsyg.2022.889001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
In the avian brain, adult neurogenesis has been reported in the telencephalon of several species, but the functional significance of this trait is still ambiguous. Homing pigeons (Columba livia f.d.) are well-known for their navigational skills. Their brains are functionally adapted to homing with, e.g., larger hippocampi. So far, no comprehensive mapping of adult neuro- and gliogenesis or studies of different developmental neuronal stages in the telencephalon of homing pigeons exists, although comprehensive analyses in various species surely will result in a higher understanding of the functional significance of adult neurogenesis. Here, adult, free flying homing pigeons were treated with 5-bromo-deoxyuridine (BrdU) to label adult newborn cells. Brains were dissected and immunohistochemically processed with several markers (GFAP, Sox2, S100ß, Tbr2, DCX, Prox1, Ki67, NeuN, Calbindin, Calretinin) to study different stages of adult neurogenesis in a quantitative and qualitative way. Therefore, immature and adult newborn neurons and glial cells were analyzed along the anterior–posterior axis. The analysis proved the existence of different neuronal maturation stages and showed that immature cells, migrating neurons and adult newborn neurons and glia were widely and regionally unequally distributed. Double- and triple-labelling with developmental markers allowed a stage classification of adult neurogenesis in the pigeon brain (1: continuity of stem cells/proliferation, 2: fate specification, 3: differentiation/maturation, 4: integration). The most adult newborn neurons and glia were found in the intercalated hyperpallium (HI) and the hippocampal formation (HF). The highest numbers of immature (DCX+) cells were detected in the nidopallium (N). Generally, the number of newborn glial cells exceeded the number of newborn neurons. Individual structures (e.g., HI, N, and HF) showed further variations along the anterior–posterior axis. Our qualitative classification and the distribution of maturing cells in the forebrain support the idea that there is a functional specialization, respectively, that there is a link between brain-structure and function, species-specific requirements and adult neurogenesis. The high number of immature neurons also suggests a high level of plasticity, which points to the ability for rapid adaption to environmental changes through additive mechanisms. Furthermore, we discuss a possible influence of adult neurogenesis on spatial cognition.
Collapse
Affiliation(s)
- Julia Mehlhorn
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Julia Mehlhorn,
| | - Nelson Niski
- C. and O. Vogt-Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ke Liu
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Katrin Amunts
- C. and O. Vogt-Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Christina Herold
- C. and O. Vogt-Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Diez A, An HY, Carfagnini N, Bottini C, MacDougall-Shackleton SA. Neurogenesis and the development of neural sex differences in vocal control regions of songbirds. J Comp Neurol 2021; 529:2970-2986. [PMID: 33719029 DOI: 10.1002/cne.25138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/10/2022]
Abstract
The brain regions that control the learning and production of song and other learned vocalizations in songbirds exhibit some of the largest sex differences in the brain known in vertebrates and are associated with sex differences in singing behavior. Song learning takes place through multiple stages: an early sensory phase when song models are memorized, followed by a sensorimotor phase in which auditory feedback is used to modify song output through subsong, plastic song, to adult crystalized song. However, how patterns of neurogenesis in these brain regions change through these learning stages, and differ between the sexes, is little explored. We collected brains from 63 young male and female zebra finches (Taeniopygia guttata) over four stages of song learning. Using neurogenesis markers for cell division (proliferating cell nuclear antigen), neuron migration (doublecortin), and mature neurons (neuron-specific nuclear protein), we demonstrate that there are sex-specific changes in neurogenesis over song development that differ between the caudal motor pathway and anterior forebrain pathway of the vocal control circuit. In many of these regions, sex differences emerged very early in development, by 25 days post hatch, at the beginning of song learning. The emergence of sex differences in other components of the system was more gradual and had specific trajectories depending on the brain region and its function. In conclusion, we found that sex differences occurred early and continued during song learning. Moreover, transitions from the different phases of song development do not seem to depend on large changes in neurogenesis in the vocal control areas measured.
Collapse
Affiliation(s)
- Adriana Diez
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada.,Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| | - Ha Yun An
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| | - Nicole Carfagnini
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Claire Bottini
- Department of Biology, University of Western Ontario, London, Ontario, Canada.,Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Scott A MacDougall-Shackleton
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada.,Department of Biology, University of Western Ontario, London, Ontario, Canada.,Department of Psychology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
4
|
Voukali E, Veetil NK, Němec P, Stopka P, Vinkler M. Comparison of plasma and cerebrospinal fluid proteomes identifies gene products guiding adult neurogenesis and neural differentiation in birds. Sci Rep 2021; 11:5312. [PMID: 33674647 PMCID: PMC7935914 DOI: 10.1038/s41598-021-84274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/10/2021] [Indexed: 11/27/2022] Open
Abstract
Cerebrospinal fluid (CSF) proteins regulate neurogenesis, brain homeostasis and participate in signalling during neuroinflammation. Even though birds represent valuable models for constitutive adult neurogenesis, current proteomic studies of the avian CSF are limited to chicken embryos. Here we use liquid chromatography-tandem mass spectrometry (nLC-MS/MS) to explore the proteomic composition of CSF and plasma in adult chickens (Gallus gallus) and evolutionarily derived parrots: budgerigar (Melopsittacus undulatus) and cockatiel (Nymphicus hollandicus). Because cockatiel lacks a complete genome information, we compared the cross-species protein identifications using the reference proteomes of three model avian species: chicken, budgerigar and zebra finch (Taeniopygia guttata) and found the highest identification rates when mapping against the phylogenetically closest species, the budgerigar. In total, we identified 483, 641 and 458 unique proteins consistently represented in the CSF and plasma of all chicken, budgerigar and cockatiel conspecifics, respectively. Comparative pathways analyses of CSF and blood plasma then indicated clusters of proteins involved in neurogenesis, neural development and neural differentiation overrepresented in CSF in each species. This study provides the first insight into the proteomics of adult avian CSF and plasma and brings novel evidence supporting the adult neurogenesis in birds.
Collapse
Affiliation(s)
- Eleni Voukali
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic.
| | - Nithya Kuttiyarthu Veetil
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic.
| |
Collapse
|
5
|
Mazengenya P, Bhagwandin A, Ihunwo AO. Putative adult neurogenesis in palaeognathous birds: The common ostrich (Struthio camelus) and emu (Dromaius novaehollandiae). Int J Dev Neurosci 2020; 80:613-635. [PMID: 32767787 DOI: 10.1002/jdn.10057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022] Open
Abstract
In the current study, we examined adult neurogenesis throughout the brain of the common ostrich (Struthio camelus) and emu (Dromaius novaehollandiae) using immunohistochemistry for the endogenous markers PCNA which labels proliferating cells, and DCX, which stains immature and migrating neurons. The distribution of PCNA and DCX labelled cells was widespread throughout the brain of both species. The highest density of cells immunoreactive to both markers was observed in the olfactory bulbs and the telencephalon, especially the subventricular zone of the lateral ventricle. Proliferative hot spots, identified with strong PCNA and DCX immunolabelling, were identified in the dorsal and ventral poles of the rostral aspects of the lateral ventricles. The density of PCNA immunoreactive cells was less in the telencephalon of the emu compared to the common ostrich. Substantial numbers of PCNA immunoreactive cells were observed in the diencephalon and brainstem, but DCX immunoreactivity was weaker in these regions, preferentially staining axons and dendrites over cell bodies, except in the medial regions of the hypothalamus where distinct DCX immunoreactive cells and fibres were observed. PCNA and DCX immunoreactive cells were readily observed in moderate density in the cortical layers of the cerebellum of both species. The distribution of putative proliferating cells and immature neurons in the brain of the common ostrich and the emu is widespread, far more so than in mammals, and compares with the neognathous birds, and suggests that brain plasticity and neuronal turnover is an important aspect of cognitive brain functions in these birds.
Collapse
Affiliation(s)
- Pedzisai Mazengenya
- College of Medicine, Ajman University, Ajman, United Arab Emirates.,School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Rondebosch, South Africa
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Herold C, Schlömer P, Mafoppa-Fomat I, Mehlhorn J, Amunts K, Axer M. The hippocampus of birds in a view of evolutionary connectomics. Cortex 2019; 118:165-187. [DOI: 10.1016/j.cortex.2018.09.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
|
7
|
Nkomozepi P, Mazengenya P, Ihunwo AO. Quantitative analysis of age and life-history stage related changes in DCX expression in the male Japanese quail (Cortunix japonica) telencephalon. Int J Dev Neurosci 2019; 74:38-48. [PMID: 30890437 DOI: 10.1016/j.ijdevneu.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/23/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
Most avian neurogenesis studies focused on the song control system and little attention has been given to non-song birds such as the Japanese quail. However, the only few neurogenesis studies in quails mainly focused on the sex steroid sensitive areas of the brain such as the medial preoptic and lateral septal nuclei. Despite the important role the quail telencephalon plays in filial imprinting and passive avoidance learning, neurogenesis in this structure has been completely overlooked. The aim of this study was therefore to quantitatively determine how DCX expression in the Japanese quail telencephalon changes with post hatching age (3-12 weeks) and life history stage. In this study, DCX was used as a proxy for neuronal incorporation. Bipolar and multipolar DCX immunoreactive cells were observed in the entire telencephalon except for the entopallium and arcopallium. In addition, DCX expression in all the eight telencephalic areas quantified was strongly negatively correlated with post-hatching age. Furthermore, numbers of bipolar and multipolar DCX immunoreactive cells were higher in the juvenile compared to subadult and adult quails. In conclusion, neuronal incorporation in the quail telencephalon is widespread but it declines with post hatching age. In addition, the most dramatic decline in neuronal incorporation in the telencephalic areas quantified takes place just after the birds have attained sexual maturity.
Collapse
Affiliation(s)
- Pilani Nkomozepi
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa; Department of Human Anatomy & Physiology, University of Johannesburg, Cnr Siemert and Beit Streets, Doornfontein, Johannesburg, 2094, South Africa
| | - Pedzisai Mazengenya
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| |
Collapse
|
8
|
Mazengenya P, Bhagwandin A, Manger PR, Ihunwo AO. Putative Adult Neurogenesis in Old World Parrots: The Congo African Grey Parrot ( Psittacus erithacus) and Timneh Grey Parrot ( Psittacus timneh). Front Neuroanat 2018; 12:7. [PMID: 29487507 PMCID: PMC5816827 DOI: 10.3389/fnana.2018.00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/15/2018] [Indexed: 11/21/2022] Open
Abstract
In the current study, we examined for the first time, the potential for adult neurogenesis throughout the brain of the Congo African grey parrot (Psittacus erithacus) and Timneh grey parrot (Psittacus timneh) using immunohistochemistry for the endogenous markers proliferating cell nuclear antigen (PCNA), which labels proliferating cells, and doublecortin (DCX), which stains immature and migrating neurons. A similar distribution of PCNA and DCX immunoreactivity was found throughout the brain of the Congo African grey and Timneh grey parrots, but minor differences were also observed. In both species of parrots, PCNA and DCX immunoreactivity was observed in the olfactory bulbs, subventricular zone of the lateral wall of the lateral ventricle, telencephalic subdivisions of the pallium and subpallium, diencephalon, mesencephalon and the rhombencephalon. The olfactory bulb and telencephalic subdivisions exhibited a higher density of both PCNA and DCX immunoreactive cells than any other brain region. DCX immunoreactive staining was stronger in the telencephalon than in the subtelencephalic structures. There was evidence of proliferative hot spots in the dorsal and ventral poles of the lateral ventricle in the Congo African grey parrots at rostral levels, whereas only the dorsal accumulation of proliferating cells was observed in the Timneh grey parrot. In most pallial regions the density of PCNA and DCX stained cells increased from rostral to caudal levels with the densest staining in the nidopallium caudolaterale (NCL). The widespread distribution of PCNA and DCX in the brains of both parrot species suggest the importance of adult neurogenesis and neuronal plasticity during learning and adaptation to external environmental variations.
Collapse
Affiliation(s)
- Pedzisai Mazengenya
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Russell VA. Notes on the Recent History of Neuroscience in Africa. Front Neuroanat 2017; 11:96. [PMID: 29163069 PMCID: PMC5681988 DOI: 10.3389/fnana.2017.00096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/16/2017] [Indexed: 01/16/2023] Open
Abstract
Neuroscience began with neuroanatomy and neurosurgery in Egypt more than 5000 years ago. Knowledge grew over time and specialized neurosurgery centers were established in north Africa in the eleventh century. However, it was not until the twentieth century that neuroscience research became established in sub-Saharan Africa. In most African countries, clinical research focused on understanding the rationale and improving treatment of epilepsy, infections, nutritional neuropathies, stroke and tumors. Significant advances were made. In the twenty-first century, African knowledge expanded to include all branches of neuroscience, contributing to genetic, biochemical and inflammatory determinants of brain disorders. A major focus of basic neuroscience research has been, and is, investigation of plant extracts, drugs and stress in animal models, providing insight and identifying potential novel therapies. A significant event in the history of African neuroscience was the founding of the Society of Neuroscientists of Africa (SONA) in 1993. The International Brain Research Organization (IBRO) supported SONA conferences, as well as workshops and neuroscience training schools in Africa. Thanks to their investment, as well as that of funding agencies, such as the National Institutes of Health (NIH), International Society for Neurochemistry (ISN), World Federation of Neurosurgical Societies (WFNS), World Federation of Neurology (WFN) and the International League Against Epilepsy (ILAE), neuroscience research is well-established in Africa today. However, in order to continue to develop, African neuroscience needs continued international support and African neuroscientists need to engage in policy and decision-making to persuade governments to fund studies that address the unique regional needs in Africa.
Collapse
Affiliation(s)
- Vivienne A Russell
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa.,School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|