1
|
Qiu L, Lu X, Xue W, Fu H, Deng S, Li L, Chen M, Wang Y. Ischemic stroke susceptibility associated with ALPK1 single nucleotide polymorphisms by inhibiting URAT1 in uric acid hemostasis. Gene 2025; 934:149017. [PMID: 39437898 DOI: 10.1016/j.gene.2024.149017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES Ischemic stroke (IS) prevalence rising annually, the necessity of discovering non-interventional genetic influences is progressing. Single nucleotide polymorphism (SNP) plays a pivotal role in stable inheritance of disease susceptibility. Based on the relationship between Alpha- Kinase 1 (ALPK1) and traditional IS risk factors especially hyperuricemia, our study investigated the association and function of ALPK1 SNPs with IS susceptibility. METHODS A case-control study of 1539 patients and 933 controls from northeast China was conducted. Genotyping information of ALPK1 rs2074379 and rs2074388 was collected. Four types of plasmids including rs2074379/rs2074388 G/G, A/G, G/A, and A/A were transfected into 293T cells to observe ALPK1 and SLC22A12 expression. Possible ALPK1 structures of different SNPs were predicted online. RESULTS Genotype GG (OR = 1.371, CI = 1.029-1.828, P = 0.031) and GA (OR = 1.326, CI = 1.110-1.584, P = 0.002) of rs2074379 and GA of rs2074388 (OR = 1.359, CI = 1.137-1.624, P = 0.001) were found significantly susceptible to IS, with G allele on sites to be a risk allele. Rs2074379 had a multiplicative interaction with hyperuricemia (OR = 1.637, CI = 1.157-2.315, P = 0.005). Uric acid levels differed in genotypes (P < 0.001). The expression of ALPK1 (P < 0.01) and SLC22A12 in membrane urate transporter 1 (URAT1) protein (P < 0.05) functionally changed with G allele on either site. With glycine changing into aspartic acid at rs2074388, the protein secondary structure changed, but the ALPK1 protein subtype remained still. CONCLUSIONS ALPK1 rs2074379 and rs2074388 SNPs were functionally associated with IS susceptibility. The wild allele progressed IS risk probably by reducing ALPK1 expression and inhibiting URAT1 raising the uric acid level, contributing to further exploration of pathogenetic mechanisms of stroke. Chinese Clinical Trial Registration number: ChiCTR-COC-17013559.
Collapse
Affiliation(s)
- Luying Qiu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Xiaoqin Lu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Weishuang Xue
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Hefei Fu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Shumin Deng
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Long Li
- Department of Neurosurgery, The First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Meilin Chen
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100069, China
| | - Yanzhe Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China.
| |
Collapse
|
2
|
Radak M, Fallahi H. Identification and prediction of molecular factors associated with ischemic stroke: an integrative analysis of DEGs, TFs, and PPI networks. IN VITRO MODELS 2023; 2:307-315. [PMID: 39872497 PMCID: PMC11756436 DOI: 10.1007/s44164-023-00063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 01/30/2025]
Abstract
Ischemic stroke (IS) is a complex neurological disorder characterized by the sudden disruption of blood flow to the brain, leading to severe and often irreversible damage. Despite advances in stroke management, the underlying molecular mechanisms and key factors involved in the development and progression of IS remain elusive. In recent years, the integration of high-throughput data analysis techniques has emerged as a powerful approach to unraveling the molecular intricacies of complex diseases. In this study, we comprehensively analyzed gene expression, protein-protein interactions (PPI), and gene regulatory networks to identify IS-associated molecular factors. We utilized publicly available datasets and employed bioinformatics tools to analyze the data. Our analysis revealed many differentially expressed genes (DEGs) in IS, with a predominant down-regulation of genes. Gene ontology (GO) analysis highlighted the involvement of various biological processes, including transcriptional regulation, cell cycle, immune system processes, and cell differentiation. These findings underscore the complexity of stroke pathology, involving dysregulated gene expression and disrupted cellular processes. Constructing PPI networks enabled us to identify specific subnetworks associated with critical biological processes relevant to stroke, such as nucleosome assembly, protein translation, glycosylation, protein folding, and mRNA splicing. These subnetworks provide insights into the dysregulated molecular mechanisms contributing to stroke progression. Furthermore, we focused on identifying differentially expressed transcription factors (DE-TFs) within the gene regulatory network. Several up-regulated DE-TFs, including E2F1, MYB, GFI1B, and NUCKS1, were identified, suggesting their potential involvement in the dysregulation of gene expression in IS.
Collapse
Affiliation(s)
- Mehran Radak
- Department of Biology, School of Sciences, Razi University, Baq-E-Abrisham, Kermanshah, Islamic Republic of Iran Postal Code: 6714967346
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Baq-E-Abrisham, Kermanshah, Islamic Republic of Iran Postal Code: 6714967346
| |
Collapse
|
3
|
Wang X, Chen H, Song F, Zuo K, Chen X, Zhang X, Liang L, Ta Q, Zhang L, Li J. Resveratrol: a potential medication for the prevention and treatment of varicella zoster virus-induced ischemic stroke. Eur J Med Res 2023; 28:400. [PMID: 37794518 PMCID: PMC10552394 DOI: 10.1186/s40001-023-01291-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/14/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Infection rate of varicella zoster virus (VZV) is 95% in humans, and VZV infection is strongly associated with ischemic stroke (IS). However, the underlying molecular mechanisms of VZV-induced IS are still unclear, and there are no effective agents to treat and prevent VZV-induced IS. OBJECTIVE By integrating bioinformatics, this study explored the interactions between VZV and IS and potential medication to treat and prevent VZV-induced IS. METHODS In this study, the VZV and IS datasets from the GEO database were used to specify the common genes. Then, bioinformatics analysis including Gene Ontology, Kyoto Encyclopedia Genes Genomes and Protein-Protein Interaction network analysis was performed. Further, the hub genes, transcription factor (TF) gene interactions, TF-miRNA co-regulatory network and potential drug were obtained. Finally, validation was performed using molecular docking and molecular dynamics simulations. RESULTS The potential molecular mechanisms of VZV-induced IS were studied using multiple bioinformatics tools. Ten hub genes were COL1A2, DCN, PDGFRB, ACTA2, etc. TF genes and miRNAs included JUN, FOS, CREB, BRCA1, PPARG, STAT3, miR-29, etc. A series of mechanism may be involved, such as inflammation, oxidative stress, blood-brain barrier disruption, foam cell generation and among others. Finally, we proposed resveratrol as a potential therapeutic medicine for the prevention and treatment of VZV-induced IS. Molecular docking and molecular dynamics results showed that resveratrol and hub genes exhibited strong binding score. CONCLUSIONS Resveratrol could be an alternative for the prevention and treatment of VZV-IS. More in vivo and in vitro studies are needed in the future to fully explore the molecular mechanisms between VZV and IS and for medication development.
Collapse
Affiliation(s)
- Xu Wang
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Hao Chen
- Department of Neurovascular Surgery, First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Feiyu Song
- Jilin Connell Pharmaceutical Co., Ltd, JilinJilin, 132013, China
| | - Kuiyang Zuo
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Xin Chen
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Xu Zhang
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Lanqian Liang
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Qiyi Ta
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Lin Zhang
- China-Japan Union Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
4
|
Velazquez-Roman J, Angulo-Zamudio UA, Leon-Sicairos N, Flores-Villaseñor H, Benitez-Baez M, Espinoza-Salomón A, Karam-León A, Villamil-Ramírez H, Canizales-Quinteros S, Macías-Kauffer L, Monroy-Higuera J, Acosta-Smith E, Canizalez-Roman A. Association of PCSK1 and PPARG1 Allelic Variants with Obesity and Metabolic Syndrome in Mexican Adults. Genes (Basel) 2023; 14:1775. [PMID: 37761915 PMCID: PMC10531047 DOI: 10.3390/genes14091775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
UNLABELLED Metabolic diseases, including obesity, diabetes, and metabolic syndrome, are among the most important public health challenges worldwide. Metabolic diseases are classified as multifactorial diseases in which genetic variants such as single-nucleotide polymorphisms (SNPs) may play an important role. The present study aimed to identify associations linking allelic variants of the PCSK1, TMEM18, GPX5, ZPR1, ZBTB16, and PPARG1 genes with anthropometric and biochemical traits and metabolic diseases (obesity or metabolic syndrome) in an adult population from northwestern Mexico. METHODS Blood samples were collected from 523 subjects, including 247 with normal weight, 276 with obesity, and 147 with metabolic syndrome. Anthropometric and biochemical characteristics were recorded, and single-nucleotide polymorphisms (SNPs) were genotyped by real-time PCR. RESULTS PCSK1 was significantly (p < 0.05) associated with BMI, weight, and waist-to-hip ratio; TMEM18 was significantly associated with systolic blood pressure and triglyceride levels; GPX5 was significantly associated with HDL cholesterol levels. In addition, PCSK1 was associated with obesity (p = 1.0 × 10-4) and metabolic syndrome (p = 3.0 × 10-3), whereas PPARG1 was associated with obesity (p = 0.044). CONCLUSIONS The associations found in this study, mainly between allelic variants of PCSK1 and metabolic traits, obesity, and metabolic syndrome, may represent a risk for developing metabolic diseases in adult subjects from northwestern Mexico.
Collapse
Affiliation(s)
- Jorge Velazquez-Roman
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
| | - Uriel A. Angulo-Zamudio
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
| | - Nidia Leon-Sicairos
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
- Pediatric Hospital of Sinaloa, Constitución 530, Jorge Almada, Culiacan Sinaloa 80200, Mexico
| | - Hector Flores-Villaseñor
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
- The Sinaloa State Public Health Laboratory, Secretariat of Health, Culiacan Sinaloa 80020, Mexico
| | - Miriam Benitez-Baez
- Programa de Doctorado, Posgrado Integral en Biotecnología, FCQB, UAS, Culiacan Sinaloa 80013, Mexico; (M.B.-B.); (A.K.-L.); (J.M.-H.)
| | - Ana Espinoza-Salomón
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
| | - Alejandra Karam-León
- Programa de Doctorado, Posgrado Integral en Biotecnología, FCQB, UAS, Culiacan Sinaloa 80013, Mexico; (M.B.-B.); (A.K.-L.); (J.M.-H.)
| | - Hugo Villamil-Ramírez
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/INMEGEN, Mexico City 04510, Mexico; (H.V.-R.); (S.C.-Q.); (L.M.-K.)
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/INMEGEN, Mexico City 04510, Mexico; (H.V.-R.); (S.C.-Q.); (L.M.-K.)
| | - Luis Macías-Kauffer
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/INMEGEN, Mexico City 04510, Mexico; (H.V.-R.); (S.C.-Q.); (L.M.-K.)
| | - Jose Monroy-Higuera
- Programa de Doctorado, Posgrado Integral en Biotecnología, FCQB, UAS, Culiacan Sinaloa 80013, Mexico; (M.B.-B.); (A.K.-L.); (J.M.-H.)
| | - Erika Acosta-Smith
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
| | - Adrian Canizalez-Roman
- School of Medicine, Autonomous University of Sinaloa, Culiacan Sinaloa 80019, Mexico; (J.V.-R.); (U.A.A.-Z.); (N.L.-S.); (H.F.-V.); (A.E.-S.); (E.A.-S.)
- The Women’s Hospital, Secretariat of Health, Culiacan Sinaloa 80020, Mexico
| |
Collapse
|
5
|
El-Farahaty RM, Fouda O, EL-Deasty A, El-Gilany AH, Saied N. Peroxisome proliferator-activated receptor γ Pro12 ala polymorphism and risk of cerebral stroke in type 2 diabetes mellitus egyptian patients. J Diabetes Metab Disord 2023; 22:415-422. [PMID: 37255811 PMCID: PMC10225373 DOI: 10.1007/s40200-022-01159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/17/2022] [Accepted: 11/20/2022] [Indexed: 06/01/2023]
Abstract
Objectives This study aimed to analyze the association of the peroxisome proliferator activated receptor gamma (PPARγ) P12A (rs1801282) polymorphism with development of cerebral stroke in patients with type 2 diabetes mellitus. Methods We included 224 patients with diabetes, they were categorized into116 patients with ischemic stroke (IS) and 108 without IS, in addition to 148 healthy controls in this study. respectively. Anthropometric parameters and laboratory tests were measured. The polymorphism was detected by a PCR-RFLP method. Results A12 allele and A12 containing genotypes show significant higher percentage in patients with diabetes and IS in comparison to diabetes patients without IS (9.1 vs. 4.2%,16.4 vs7.4%; P = 0.044,0.044) with OR of 2.29 and 2. 449 respectively (95% CI: 1.024-5.115, 1.024-5.856) but does not withstand Bonferroni correction. Conclusion A12 containing genotypes and A12 allele are not associated with IR, diabetes and risk of IS development, however, significant higher BMI were observed in A12 allele carriers in the studied patients with diabetes as well as those with IS.
Collapse
Affiliation(s)
- Reham M. El-Farahaty
- Clinical Pathology department, Mansoura University Faculty of Medicine, Elgomhouria St, 35516 Mansoura City, Egypt
| | - Osama Fouda
- Internal Medicine department, Mansoura University Faculty of Medicine, Elgomhouria St, 35516 Mansoura City, Egypt
| | - Amany EL-Deasty
- Clinical Pathology department, Mansoura University Faculty of Medicine, Elgomhouria St, 35516 Mansoura City, Egypt
| | - Abdel-Hady El-Gilany
- Public health department, Mansoura University Faculty of Medicine, Elgomhouria St, 35516 Mansoura City, Egypt
| | - Narmin Saied
- Clinical Pathology department, Mansoura University Faculty of Medicine, Elgomhouria St, 35516 Mansoura City, Egypt
| |
Collapse
|
6
|
Qiu L, Wang Y, Liu F, Deng S, He Z, Zheng W, Wang Y. Genetic polymorphisms of pri-let-7f, gene-environment and gene-gene interactions, and associations with ischemic stroke risk in Liaoning Province. J Int Med Res 2023; 51:3000605231173578. [PMID: 37170751 PMCID: PMC10184219 DOI: 10.1177/03000605231173578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/17/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE The incidence of stroke has been rising annually and investigations into traditional risk factors have led to increased attention on genetic factors. In this study, we focused on the pri-let-7f gene, and investigated the association between pri-let-7f gene polymorphisms and ischemic stroke (IS). METHODS This case-control study included 1803 patients and 1456 healthy controls of Han ethnicity living in Liaoning Province. We carried out genotyping analysis of two loci, pri-let-7f-1 rs10739971 and pri-let-7f-2 rs17276588, and performed statistical analysis controlling for confounding factors by logistic regression. RESULTS The A alleles and AA genotypes of both loci were significantly associated with an increased risk of IS. Variant genotypes of rs17276588 may also increase the risk of IS in females with alcohol intake. Gene-gene interaction analysis showed combined effects of mutations in both these single nucleotide polymorphisms (SNPs). CONCLUSIONS This study demonstrated an association between pri-let-7f SNPs and IS, providing potential latent biomarkers for the risk of IS. However, more detailed studies are needed to clarify these results.
Collapse
Affiliation(s)
- Luying Qiu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuye Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Neurology, China-Japan Friendship Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Liu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shumin Deng
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyi He
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenxu Zheng
- Geriatric Department of Dalian Friendship Hospital, No. 8 Sanba Square, Dalian, China
| | - Yanzhe Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Wang Y, Qiu L, Jiang W, Chen M, He Z, Wang Y, Deng S. Genetic variants in the promoters of let-7 are associated with the risk and age at onset of ischemic stroke: A case control study. J Stroke Cerebrovasc Dis 2023; 32:106998. [PMID: 36780761 DOI: 10.1016/j.jstrokecerebrovasdis.2023.106998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 02/13/2023] Open
Abstract
PURPOSE Let-7 family members serve as crucial regulatory molecules in the pathogenesis of ischemic stroke. We predicted that genetic variations in the let-7 family's promoters may be linked to the risk of ischemic stroke. The connection of rs10877887 and rs13293512 in the let-7 family promoters with liability to ischemic stroke was explored in this study. PATIENTS AND METHODS Clinical data and peripheral blood samples were collected from 914 ischemic stroke patients and 836 controls in this case-control study. All statistical analyses were carried out using SPSS. RESULTS Our analysis results reveal that the rs10877887 TC+CC genotype in the dominant model is associated with a lower risk of ischemic stroke than the TT genotype. Individuals with heterozygous TC or homozygous CC genotypes in the male population showed higher odds of ischemic stroke than those with the wild TT genotype in rs13293512 analysis. Furthermore, there existed a multiplicative interaction between the rs10877887 C allele and the rs13293512 T allele. In the presence of the rs13293512 T allele, the effect of the rs10877887 C allele on ischemic stroke risk was increased. Similarly, in the presence of the rs10877887 C allele, the outcome of the rs13293512 T allele on ischemic stroke risk was elevated. In addition, the rs13293512 CC genotype seemed to lead to an earlier onset of ischemic stroke. CONCLUSION Our findings indicated that these two SNPs might have a joint role in IS and could potentially act as risk markers. Detecting let-7 promoter polymorphisms could raise awareness of the risk of IS, which directed individuals with risk alleles to have regular checks at an appropriate frequency to avoid developing the disease.
Collapse
Affiliation(s)
- Yuye Wang
- Department of Neurology, China-Japan Friendship Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100029, China; Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Luying Qiu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Wenjuan Jiang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Meilin Chen
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Zhiyi He
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yanzhe Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Shumin Deng
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
8
|
Wang Y, Qiu L, Wang Y, He Z, Lan X, Cui L, Wang Y. Genetic variation within the pri-let-7f-2 in the X chromosome predicting stroke risk in a Chinese Han population from Liaoning, China: From a case-control study to a new predictive nomogram. Front Med (Lausanne) 2022; 9:936249. [PMID: 36530894 PMCID: PMC9747750 DOI: 10.3389/fmed.2022.936249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/15/2022] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Stroke is the most common cause of disability and the second cause of death worldwide. Therefore, there is a need to identify patients at risk of developing stroke. This case-control study aimed to create and verify a gender-specific genetic signature-based nomogram to facilitate the prediction of ischemic stroke (IS) risk using only easily available clinical variables. MATERIALS AND METHODS A total of 1,803 IS patients and 1,456 healthy controls from the Liaoning province in China (Han population) were included which randomly divided into training cohort (70%) and validation cohort (30%) using the sample function in R software. The distribution of the pri-let-7f-2 rs17276588 variant genotype was analyzed. Following genotyping analysis, statistical analysis was used to identify relevant features. The features identified from the multivariate logistic regression, the least absolute shrinkage and selection operator (LASSO) regression, and univariate regression were used to create a multivariate prediction nomogram model. A calibration curve was used to determine the discrimination accuracy of the model in the training and validation cohorts. External validity was also performed. RESULTS The genotyping analysis identified the A allele as a potential risk factor for IS in both men and women. The nomogram identified the rs17276588 variant genotype and several clinical parameters, including age, diabetes mellitus, body mass index (BMI), hypertension, history of alcohol use, history of smoking, and hyperlipidemia as risk factors for developing IS. The calibration curves for the male and female models showed good consistency and applicability. CONCLUSION The pri-let-7f-2 rs17276588 variant genotype is highly linked to the incidence of IS in the northern Chinese Han population. The nomogram we devised, which combines genetic fingerprints and clinical data, has a lot of promise for predicting the risk of IS within the Chinese Han population.
Collapse
Affiliation(s)
- Yaxuan Wang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Luying Qiu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuye Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyi He
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xue Lan
- School of Health Management, China Medical University, Shenyang, China
| | - Lei Cui
- School of Health Management, China Medical University, Shenyang, China
| | - Yanzhe Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Ding L, Ye H, Gu LD, Du AQ, Yuan XL. Echinacoside Alleviates Cognitive Impairment in Cerebral Ischemia Rats through α 7nAChR-Induced Autophagy. Chin J Integr Med 2022; 28:809-816. [PMID: 35799084 DOI: 10.1007/s11655-022-2893-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To evaluate the effect of echinacoside (ECH) on cognitive dysfunction in post cerebral stroke model rats. METHODS The post stroke cognitive impairment rat model was created by occlusion of the transient middle cerebral artery (MCAO). The rats were randomly divided into 3 groups by a random number table: the sham group (sham operation), the MCAO group (received operation for focal cerebral ischemia), and the ECH group (received operation for focal cerebral ischemia and ECH 50 mg/kg per day), with 6 rats in each group. The infarct volume and spatial learning were evaluated by triphenyl tetrazolium chloride staining and Morris water maze. The expression of α7nAChR in the hippocampus was detected by immunohistochemistry. The contents of acetylcholine (ACh), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), activities of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), and catalase (CAT) were evaluated by enzyme linked immunosorbent assay. The neural apoptosis and autophagy were determined by TUNEL staining and LC3 staining, respectively. RESULTS ECH significantly lessened the brain infarct volume and ameliorated neurological deficit in infarct volume and water content (both P<0.01). Compared with MCAO rats, administration of ECH revealed shorter escape latency and long retention time at 7, 14 and 28 days (all P<0.01), increased the α7nAChR protein expression, ACh content, and ChAT activity, and decreased AChE activity in MCAO rats (all P<0.01). ECH significantly decreased MDA content and increased the GSH content, SOD, and CAT activities compared with MCAO rats (all P<0.05). ECH suppressed neuronal apoptosis by reducing TUNEL-positive cells and also enhanced autophagy in MCAO rats (all P<0.01). CONCLUSION ECH treatment helped improve cognitive impairment by attenuating neurological damage and enhancing autophagy in MCAO rats.
Collapse
Affiliation(s)
- Ling Ding
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Hong Ye
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Long-Dian Gu
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - An-Qing Du
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Xin-Lu Yuan
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|
10
|
Cheng F, Si XM, Yang GL, Zhou L. Relationship between PPAR-γ gene polymorphisms and ischemic stroke risk: A meta-analysis. Brain Behav 2021; 11:e2434. [PMID: 34758198 PMCID: PMC8671800 DOI: 10.1002/brb3.2434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Published researches have suggested some associations between PPAR-γ and ischemic stroke (IS) development. This meta-analysis was conducted to evaluate the association between PPAR-γ gene polymorphisms and IS risk. MATERIALS AND METHODS A systematic search was conducted in PubMed, Embase, Web of Science, China National Knowledge Infrastructure, and WanFang databases. The pooled association of odd ratios (ORs) and its 95% confidence interval (CI) was calculated to assess the IS risk of PPAR-γ rs1801282 C/G and rs3856806 C/T polymorphisms. Furthermore, the heterogeneity test, cumulative analyses, sensitivity analyses, and publication bias were conducted. RESULT Sixteen publications with 3786 cases and 5343 controls were identified. Overall findings indicated that rs1801282 C/G polymorphism may be associated with an increased risk for IS (GG vs. CC: OR = 2.17 95%CI = 1.09-4.35, p = .03, I2 = 0%; GG vs. CC+CG: OR = 2.15, 95%CI = 1.07-4.32, p = .03, I2 = 0%). The similar results were also found in the subgroup analysis. In addition, no significant association was observed between rs3856806 C/T polymorphism and IS risk. CONCLUSION In conclusion, our study showed that PPAR-γ rs1801282 C/G polymorphism probably plays an important role in IS occurrence. The result should be verified with more studies in the future.
Collapse
Affiliation(s)
- Fan Cheng
- Center of Cardiopulmonary Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiao-Min Si
- Center of Cardiopulmonary Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Gong-Li Yang
- Department of Gastroenterology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Lan Zhou
- Center of Cardiopulmonary Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
11
|
Deng YH, Dong LL, Zhang YJ, Zhao XM, He HY. Enriched environment boosts the post-stroke recovery of neurological function by promoting autophagy. Neural Regen Res 2021; 16:813-819. [PMID: 33229714 PMCID: PMC8178758 DOI: 10.4103/1673-5374.297084] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/20/2020] [Accepted: 06/06/2020] [Indexed: 12/22/2022] Open
Abstract
Autophagy is crucial for maintaining cellular homeostasis, and can be activated after ischemic stroke. It also participates in nerve injury and repair. The purpose of this study was to investigate whether an enriched environment has neuroprotective effects through affecting autophagy. A Sprague-Dawley rat model of transient ischemic stroke was prepared by occlusion of the middle cerebral artery followed by reperfusion. One week after surgery, these rats were raised in either a standard environment or an enriched environment for 4 successive weeks. The enriched environment increased Beclin-1 expression and the LC3-II/LC3-I ratio in the autophagy/lysosomal pathway in the penumbra of middle cerebral artery-occluded rats. Enriched environment-induced elevations in autophagic activity were mainly observed in neurons. Enriched environment treatment also promoted the fusion of autophagosomes with lysosomes, enhanced the lysosomal activities of lysosomal-associated membrane protein 1, cathepsin B, and cathepsin D, and reduced the expression of ubiquitin and p62. After 4 weeks of enriched environment treatment, neurological deficits and neuronal death caused by middle cerebral artery occlusion/reperfusion were significantly alleviated, and infarct volume was significantly reduced. These findings suggest that neuronal autophagy is likely the neuroprotective mechanism by which an enriched environment promotes recovery from ischemic stroke. This study was approved by the Animal Ethics Committee of the Kunming University of Science and Technology, China (approval No. 5301002013855) on March 1, 2019.
Collapse
Affiliation(s)
- Yi-Hao Deng
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Ling-Ling Dong
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Yong-Jie Zhang
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Xiao-Ming Zhao
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Hong-Yun He
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| |
Collapse
|
12
|
Wang YY, Zhang HY, Jiang WJ, Liu F, Li L, Deng SM, He ZY, Wang YZ. Genetic polymorphisms in pri-let-7a-2 are associated with ischemic stroke risk in a Chinese Han population from Liaoning, China: a case-control study. Neural Regen Res 2021; 16:1302-1307. [PMID: 33318409 PMCID: PMC8284288 DOI: 10.4103/1673-5374.301019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ischemic stroke is a complicated disease, and its pathogenesis has been attributed to the occurrence of genetic polymorphisms. Evidence has suggested that the microRNA let-7a is involved in the pathogenesis of ischemic stroke. Pri-miRNA is the primary transcript, which undergoes several processing steps to generate pre-miRNA and, later, mature miRNAs. In this case-control study, we analyzed the distribution of pri-let-7a-2 variants in patients at a high risk for ischemic stroke and the interactions of pri-let-7a-2 variants and environmental factors. Blood samples and clinical information were collected from 1086 patients with ischemic stroke and 836 healthy controls between December 2013 and December 2015 at the First Affiliated Hospital of China Medical University. We found that the rs1143770 CC genotype and the C allele were associated with a decreased risk of ischemic stroke, whereas the rs629367 CC genotype was associated with an increased risk for ischemic stroke. Moreover, these two single-nucleotide polymorphisms were in linkage disequilibrium in this study sample. We analyzed gene-environment interactions and found that rs1143770 exerted a combined effect on the pathogenesis of ischemic stroke, together with alcohol use, smoking, and a history of hypertension. Therefore, the detection of pri-let-7a-2 polymorphisms may increase the awareness of ischemic stroke risk. This study was approved by the Institutional Ethics Committee of the First Affiliated Hospital of China Medical University, China (approval No. 2012-38-1) on February 20, 2012, and was registered with the Chinese Clinical Trial Registry (registration number: ChiCTR-COC-17013559) on December 27, 2017.
Collapse
Affiliation(s)
- Yu-Ye Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - He-Yu Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong Province, China
| | - Wen-Juan Jiang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University; Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| | - Fang Liu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lei Li
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shu-Min Deng
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhi-Yi He
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yan-Zhe Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University; Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
13
|
Vesnina A, Prosekov A, Kozlova O, Atuchin V. Genes and Eating Preferences, Their Roles in Personalized Nutrition. Genes (Basel) 2020; 11:genes11040357. [PMID: 32230794 PMCID: PMC7230842 DOI: 10.3390/genes11040357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
At present, personalized diets, which take into account consumer genetic characteristics, are growing popular. Nutrigenetics studies the effect of gene variations on metabolism and nutrigenomics, which branches off further and investigates how nutrients and food compounds affect genes. This work deals with the mutations affecting the assimilation of metabolites, contributing to nutrigenetic studies. We searched for the genes responsible for eating preferences which allow for the tailoring of personalized diets. Presently, genetic nutrition is growing in demand, as it contributes to the prevention and/or rehabilitation of non-communicable diseases, both monogenic and polygenic. In this work, we showed single-nucleotide polymorphisms in genes-missense mutations that change the functions of coded proteins, resulting in a particular eating preferences or a disease. We studied the genes influencing food preferences-particularly those responsible for fats and carbohydrates absorption, food intolerance, metabolism of vitamins, taste sensations, oxidation of xenobiotics, eating preferences and food addiction. As a result, 34 genes were identified that affect eating preferences. Significant shortcomings were found in the methods/programs for developing personalized diets that are used today, and the weaknesses were revealed in the development of nutrigenetics (inconsistency of data on SNP genes, ignoring population genetics data, difficult information to understand consumer, etc.). Taking into account all the shortcomings, an approximate model was proposed in the review for selecting an appropriate personalized diet. In the future, it is planned to develop the proposed model for the compilation of individual diets.
Collapse
Affiliation(s)
- Anna Vesnina
- Department of Bionanotechnology, Kemerovo State University, 650043 Kemerovo, Russia; (A.V.); (O.K.)
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Oksana Kozlova
- Department of Bionanotechnology, Kemerovo State University, 650043 Kemerovo, Russia; (A.V.); (O.K.)
| | - Victor Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
- Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, 630090 Novosibirsk, Russia
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Correspondence: ; Tel.: +7-(383)-3308889
| |
Collapse
|
14
|
Abstract
Appropriate autophagy has protective effects on ischemic nerve tissue, while excessive autophagy may cause cell death. The inflammatory response plays an important role in the survival of nerve cells and the recovery of neural tissue after ischemia. Many studies have found an interaction between autophagy and inflammation in the pathogenesis of ischemic stroke. This study outlines recent advances regarding the role of autophagy in the post-stroke inflammatory response as follows. (1) Autophagy inhibits inflammatory responses caused by ischemic stimulation through mTOR, the AMPK pathway, and inhibition of inflammasome activation. (2) Activation of inflammation triggers the formation of autophagosomes, and the upregulation of autophagy levels is marked by a significant increase in the autophagy-forming markers LC3-II and Beclin-1. Lipopolysaccharide stimulates microglia and inhibits ULK1 activity by direct phosphorylation of p38 MAPK, reducing the flux and autophagy level, thereby inducing inflammatory activity. (3) By blocking the activation of autophagy, the activation of inflammasomes can alleviate cerebral ischemic injury. Autophagy can also regulate the phenotypic alternation of microglia through the nuclear factor-κB pathway, which is beneficial to the recovery of neural tissue after ischemia. Studies have shown that some drugs such as resveratrol can exert neuroprotective effects by regulating the autophagy-inflammatory pathway. These studies suggest that the autophagy-inflammatory pathway may provide a new direction for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yun Mo
- Department of Neurology, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yin-Yi Sun
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang-Yong Liu
- Department of Neurology, Shanghai university of medicine & health Sciences Affiliated Zhoupu hospital, Shanghai, China
| |
Collapse
|
15
|
Su L, Liang D, Kuang SY, Dong Q, Han X, Wang Z. Neuroprotective mechanism of TMP269, a selective class IIA histone deacetylase inhibitor, after cerebral ischemia/reperfusion injury. Neural Regen Res 2020; 15:277-284. [PMID: 31552900 PMCID: PMC6905324 DOI: 10.4103/1673-5374.265562] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
TMP269 is a selective class IIA histone deacetylase inhibitor that has a protective effect on the central nervous system, whose specific mechanism of action is unclear. We aimed to reveal the optimal concentration of TMP269 for protecting against cerebral ischemia/reperfusion injury and its neuroprotective mechanism. Male Sprague-Dawley rats were randomly divided into sham, ischemia/reperfusion, and 1, 4, 10 and 16 mg/kg TMP269 groups. Cerebral ischemia/reperfusion injury was induced by middle cerebral artery occlusion. TMP269 was intraperitoneally administered at different doses 0.5 hours before ischemia induction. Western blot assay and immunohistochemistry were used to detect effects of TMP269 on histone 2 acetylation. The results showed that the level of histone 2 acetylation was increased 24 hours after TMP269 injection. 2,3,5-Triphenyltetrazolium chloride staining was utilized to examine effect of TMP269 on infarct volume. The results found that different doses of TMP269 could reduce the infarct volume. Western blot assay, immunohistochemistry and Evans blue staining were employed to measure the effect of TMP269 on blood-brain barrier. The results showed that TMP269 counteracted the abnormal endothelial cell permeability changes caused by cerebral ischemia/reperfusion. Western blot assay and immunohistochemistry were used to determine the effect of TMP269 on tissue kallikrein. The results found that TMP269 up-regulated the expression of tissue kallikrein. Western blot assay further determined the optimal concentration to be 4 mg/kg. In conclusion, TMP269 plays a neuroprotective role by up-regulating the level of histone 2 acetylation, alleviating endothelial cell injury after cerebral ischemia/reperfusion, and up-regulating the expression of tissue kallikrein. The experimental protocol was approved in 2014 by the Department of Laboratory Animal Science, Fudan University, China (approval No. 20140143C001).
Collapse
Affiliation(s)
- Lu Su
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Dan Liang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shen-Yi Kuang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang Han
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zheng Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|