1
|
Shi K, Bagchi S, Bickel J, Esfahani SH, Yin L, Cheng T, Karamyan VT, Aihara H. Structural basis of divergent substrate recognition and inhibition of human neurolysin. Sci Rep 2024; 14:18420. [PMID: 39117724 PMCID: PMC11310207 DOI: 10.1038/s41598-024-67639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
A zinc metallopeptidase neurolysin (Nln) processes diverse bioactive peptides to regulate signaling in the mammalian nervous system. To understand how Nln interacts with various peptides with dissimilar sequences, we determined crystal structures of Nln in complex with diverse peptides including dynorphins, angiotensin, neurotensin, and bradykinin. The structures show that Nln binds these peptides in a large dumbbell-shaped interior cavity constricted at the active site, making minimal structural changes to accommodate different peptide sequences. The structures also show that Nln readily binds similar peptides with distinct registers, which can determine whether the peptide serves as a substrate or a competitive inhibitor. We analyzed the activities and binding of Nln toward various forms of dynorphin A peptides, which highlights the promiscuous nature of peptide binding and shows how dynorphin A (1-13) potently inhibits the Nln activity while dynorphin A (1-8) is efficiently cleaved. Our work provides insights into the broad substrate specificity of Nln and may aid in the future design of small molecule modulators for Nln.
Collapse
Affiliation(s)
- Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sounak Bagchi
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Jordis Bickel
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Shiva H Esfahani
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
- Department of Foundational Medical Studies, Oakland University, Rochester, MI, 48309, USA
| | - Lulu Yin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Tiffany Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
- Department of Foundational Medical Studies, Oakland University, Rochester, MI, 48309, USA.
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
2
|
Rahman MS, Hadi Esfahani S, Zhang Y, Queen A, Aljarrah M, Kandil H, Baez A, Abbruscato TJ, Karamyan VT, Trippier PC. Imidazole Bioisostere Activators of Endopeptidase Neurolysin with Enhanced Potency and Metabolic Stability. ACS Med Chem Lett 2024; 15:510-517. [PMID: 38628788 PMCID: PMC11017387 DOI: 10.1021/acsmedchemlett.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
The peptidase neurolysin (Nln) has been validated as a potential target for developing therapeutics for ischemic stroke (IS). Overexpression of Nln in a mouse model of IS provides significant cerebroprotection, leading to reduced infarction size and edema volume. Pharmacological inhibition of Nln in the post-stroke brain worsens neurological outcomes. A virtual screen identified dipeptide small-molecule activators of Nln. Optimization studies resulted in a class of peptidomimetic compounds with promising activity. However, these compounds still possessed an amide bond that compromised their stability in plasma and the brain. Herein, we report the synthesis and characterization of a series of amide bioisosteres based on our peptidomimetic leads. Imidazole-based bioisosteres afford scaffolds with increased potency to activate Nln combined with enhanced mouse plasma stability and significantly better brain permeability over the original dipeptide hits.
Collapse
Affiliation(s)
- Md. Shafikur Rahman
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Shiva Hadi Esfahani
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
- Laboratory
for Neurodegenerative Disease & Drug Discovery, William Beaumont
School of Medicine, Oakland University, Rochester, Michigan 48309, United States
| | - Yong Zhang
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Aarfa Queen
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Manar Aljarrah
- Laboratory
for Neurodegenerative Disease & Drug Discovery, William Beaumont
School of Medicine, Oakland University, Rochester, Michigan 48309, United States
- Biological
and Biomedical Sciences Graduate Program, Oakland University, Rochester, Michigan 48309, United States
| | - Haya Kandil
- Laboratory
for Neurodegenerative Disease & Drug Discovery, William Beaumont
School of Medicine, Oakland University, Rochester, Michigan 48309, United States
- Biological
and Biomedical Sciences Graduate Program, Oakland University, Rochester, Michigan 48309, United States
| | - Andrew Baez
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Thomas J. Abbruscato
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
- Center
for Blood Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Vardan T. Karamyan
- Laboratory
for Neurodegenerative Disease & Drug Discovery, William Beaumont
School of Medicine, Oakland University, Rochester, Michigan 48309, United States
- Department
of Foundational Medical Studies, William Beaumont School of Medicine, Oakland University, Rochester, Michigan 48309, United States
| | - Paul C. Trippier
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- UNMC
Center for Drug Design and Innovation, University
of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
3
|
Dow LF, Case AM, Paustian MP, Pinkerton BR, Simeon P, Trippier PC. The evolution of small molecule enzyme activators. RSC Med Chem 2023; 14:2206-2230. [PMID: 37974956 PMCID: PMC10650962 DOI: 10.1039/d3md00399j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
There is a myriad of enzymes within the body responsible for maintaining homeostasis by providing the means to convert substrates to products as and when required. Physiological enzymes are tightly controlled by many signaling pathways and their products subsequently control other pathways. Traditionally, most drug discovery efforts focus on identifying enzyme inhibitors, due to upregulation being prevalent in many diseases and the existence of endogenous substrates that can be modified to afford inhibitor compounds. As enzyme downregulation and reduction of endogenous activators are observed in multiple diseases, the identification of small molecules with the ability to activate enzymes has recently entered the medicinal chemistry toolbox to afford chemical probes and potential therapeutics as an alternative means to intervene in diseases. In this review we highlight the progress made in the identification and advancement of non-kinase enzyme activators and their potential in treating various disease states.
Collapse
Affiliation(s)
- Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Alfie M Case
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Megan P Paustian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Braeden R Pinkerton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Princess Simeon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center Omaha NE 68106 USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center Omaha NE 68106 USA
| |
Collapse
|
4
|
Zhang Y, Sharma S, Jonnalagadda S, Kumari S, Queen A, Esfahani SH, Archie SR, Nozohouri S, Patel D, Trippier PC, Karamyan VT, Abbruscato TJ. Discovery of the Next Generation of Non-peptidomimetic Neurolysin Activators with High Blood-Brain Barrier Permeability: a Pharmacokinetics Study in Healthy and Stroke Animals. Pharm Res 2023; 40:2747-2758. [PMID: 37833570 DOI: 10.1007/s11095-023-03619-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
PURPOSE There is growing interest in seeking pharmacological activation of neurolysin (Nln) for stroke treatment. Discovery of central nervous system drugs remains challenging due to the protection of the blood-brain barrier (BBB). The previously reported peptidomimetic Nln activators display unsatisfactory BBB penetration. Herein, we investigate the next generation of non-peptidomimetic Nln activators with high BBB permeability. METHODS A BBB-mimicking model was used to evaluate their in vitro BBB permeability. Protein binding, metabolic stability, and efflux assays were performed to determine their unbound fraction, half-lives in plasma and brains, and dependence of BBB transporter P-glycoprotein (P-gp). The in vivo pharmacokinetic profiles were elucidated in healthy and stroke mice. RESULTS Compounds KS52 and KS73 out of this generation exhibit improved peptidase activity and BBB permeability compared to the endogenous activator and previous peptidomimetic activators. They show reasonable plasma and brain protein binding, improved metabolic stability, and independence of P-gp-mediated efflux. In healthy animals, they rapidly distribute into brains and reach peak levels of 18.69% and 12.10% injected dose (ID)/ml at 10 min. After 4 h, their total brain concentrations remain 7.78 and 12.34 times higher than their A50(minimal concentration required for enhancing 50% peptidase activity). Moreover, the ipsilateral hemispheres of stroke animals show comparable uptake to the corresponding contralateral hemispheres and healthy brains. CONCLUSIONS This study provides essential details about the pharmacokinetic properties of a new generation of potent non-peptidomimetic Nln activators with high BBB permeability and warrants the future development of these agents as potential neuroprotective pharmaceutics for stroke treatment.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmaceutical Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
- Center for Blood Brain Barrier Research, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Sejal Sharma
- Department of Pharmaceutical Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
- Center for Blood Brain Barrier Research, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Shirisha Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
| | - Shikha Kumari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
| | - Aarfa Queen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
| | - Shiva Hadi Esfahani
- Department of Foundational Medical Studies, William Beaumont School of Medicine, Oakland University, Rochester, MI, 48309, USA
- Laboratory for Neurodegenerative Disease & Drug Discovery, William Beaumont School of Medicine, Oakland University, Rochester, MI, 48309, USA
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
- Center for Blood Brain Barrier Research, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
- Center for Blood Brain Barrier Research, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Dhavalkumar Patel
- Office of Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center (UNMC), Omaha, NE, 68106, USA
| | - Vardan T Karamyan
- Department of Foundational Medical Studies, William Beaumont School of Medicine, Oakland University, Rochester, MI, 48309, USA
- Laboratory for Neurodegenerative Disease & Drug Discovery, William Beaumont School of Medicine, Oakland University, Rochester, MI, 48309, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
- Center for Blood Brain Barrier Research, Jerry. H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
5
|
Xiong J, Wang Z, Bai J, Cheng K, Liu Q, Ni J. Calcitonin gene-related peptide: a potential protective agent in cerebral ischemia-reperfusion injury. Front Neurosci 2023; 17:1184766. [PMID: 37529236 PMCID: PMC10387546 DOI: 10.3389/fnins.2023.1184766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
Ischemic stroke is the most common type of cerebrovascular disease with high disability and mortality rates, which severely burdens patients, their families, and society. At present, thrombolytic therapy is mainly used for the treatment of ischemic strokes. Even though it can achieve a good effect, thrombolytic recanalization can cause reperfusion injury. Calcitonin gene-related peptide (CGRP) is a neuropeptide that plays a neuroprotective role in the process of ischemia-reperfusion injury. By combining with its specific receptors, CGRP can induce vasodilation of local cerebral ischemia by directly activating the cAMP-PKA pathway in vascular smooth muscle cells and by indirectly activating the NO-cGMP pathway in an endothelial cell-dependent manner,thus rapidly increasing ischemic local blood flow together with reperfusion. CGRP, as a key effector molecule of neurogenic inflammation, can reduce the activation of microglia, downregulates Th1 classical inflammation, and reduce the production of TNF-α, IL-2, and IFN-γ and the innate immune response of macrophages, leading to the reduction of inflammatory factors. CGRP can reduce the overexpression of the aquaporin-4 (AQP-4) protein and its mRNA in the cerebral ischemic junction, and play a role in reducing cerebral edema. CGRP can protect endothelial cells from angiotensin II by reducing the production of oxidants and protecting antioxidant defense. Furthermore, CGRP-upregulated eNOS can further induce VEGF expression, which then promotes the survival and angiogenesis of vascular endothelial cells. CGRP can also reduce apoptosis by promoting the expression of Bcl-2 and inhibiting the expression of caspase-3. These effects suggest that CGRP can reduce brain injury and repair damaged nerve function. In this review, we focused on the role of CGRP in cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Jie Xiong
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zhiyong Wang
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Junhui Bai
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Keling Cheng
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qicai Liu
- Department of Reproductive Medicine Centre, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun Ni
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Hu M, Huang J, Chen L, Sun XR, Yao ZM, Tong XH, Jin WJ, Zhang YX, Dong SY. Upregulation of CDGSH iron sulfur domain 2 attenuates cerebral ischemia/reperfusion injury. Neural Regen Res 2023; 18:1512-1520. [PMID: 36571356 PMCID: PMC10075131 DOI: 10.4103/1673-5374.355766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
CDGSH iron sulfur domain 2 can inhibit ferroptosis, which has been associated with cerebral ischemia/reperfusion, in individuals with head and neck cancer. Therefore, CDGSH iron sulfur domain 2 may be implicated in cerebral ischemia/reperfusion injury. To validate this hypothesis in the present study, we established mouse models of occlusion of the middle cerebral artery and HT22 cell models of oxygen-glucose deprivation and reoxygenation to mimic cerebral ischemia/reperfusion injury in vivo and in vitro, respectively. We found remarkably decreased CDGSH iron sulfur domain 2 expression in the mouse brain tissue and HT22 cells. When we used adeno-associated virus and plasmid to up-regulate CDGSH iron sulfur domain 2 expression in the brain tissue and HT22 cell models separately, mouse neurological dysfunction was greatly improved; the cerebral infarct volume was reduced; the survival rate of HT22 cells was increased; HT22 cell injury was alleviated; the expression of ferroptosis-related glutathione peroxidase 4, cystine-glutamate antiporter, and glutathione was increased; the levels of malondialdehyde, iron ions, and the expression of transferrin receptor 1 were decreased; and the expression of nuclear-factor E2-related factor 2/heme oxygenase 1 was increased. Inhibition of CDGSH iron sulfur domain 2 upregulation via the nuclear-factor E2-related factor 2 inhibitor ML385 in oxygen-glucose deprived and reoxygenated HT22 cells blocked the neuroprotective effects of CDGSH iron sulfur domain 2 up-regulation and the activation of the nuclear-factor E2-related factor 2/heme oxygenase 1 pathway. Our data indicate that the up-regulation of CDGSH iron sulfur domain 2 can attenuate cerebral ischemia/reperfusion injury, thus providing theoretical support from the perspectives of cytology and experimental zoology for the use of this protein as a therapeutic target in patients with cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Miao Hu
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Lei Chen
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Xiao-Rong Sun
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Zi-Meng Yao
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Xu-Hui Tong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Wen-Jing Jin
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Yu-Xin Zhang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Shu-Ying Dong
- Department of Pharmacology, School of Pharmacy; Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui Province, China
| |
Collapse
|
7
|
Rahman MS, Esfahani SH, Nozohouri S, Kumari S, Kocot J, Zhang Y, Abbruscato TJ, Karamyan VT, Trippier PC. Structure-activity relationship studies of functionalized aromatic peptidomimetics as neurolysin activators. Bioorg Med Chem Lett 2022; 64:128669. [PMID: 35292343 PMCID: PMC8985228 DOI: 10.1016/j.bmcl.2022.128669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022]
Abstract
Modulating peptidase neurolysin (Nln) has been identified as a potential cerebroprotective target for the development of therapeutics for ischemic stroke. Continued structure-activity relationship studies on peptidomimetic small molecule activators of Nln bearing electron-donating and electron- withdrawing functionalized phenyls are explored. Incorporation of fluorine or trifluoromethyl groups produces Nln activators with enhanced A50, while methoxy substitution produces derivatives with enhanced Amax. Selected activators containing methoxy or trifluoromethyl substitution are selective for Nln over related peptidases and possess increased blood-brain barrier penetrability than initial hits.
Collapse
Affiliation(s)
- Md Shafikur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shiva Hadi Esfahani
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Shikha Kumari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joanna Kocot
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Yong Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Center for Blood Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Center for Blood Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
8
|
Esfahani SH, Abbruscato TJ, Trippier PC, Karamyan VT. Small molecule neurolysin activators, potential multi-mechanism agents for ischemic stroke therapy. Expert Opin Ther Targets 2022; 26:401-404. [PMID: 35543670 DOI: 10.1080/14728222.2022.2077190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shiva Hadi Esfahani
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, USA.,Center for Blood Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Paul C Trippier
- Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, USA.,Center for Blood Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
9
|
Gorostiola González M, Janssen APA, IJzerman AP, Heitman LH, van Westen GJP. Oncological drug discovery: AI meets structure-based computational research. Drug Discov Today 2022; 27:1661-1670. [PMID: 35301149 DOI: 10.1016/j.drudis.2022.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/22/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023]
Abstract
The integration of machine learning and structure-based methods has proven valuable in the past as a way to prioritize targets and compounds in early drug discovery. In oncological research, these methods can be highly beneficial in addressing the diversity of neoplastic diseases portrayed by the different hallmarks of cancer. Here, we review six use case scenarios for integrated computational methods, namely driver prediction, computational mutagenesis, (off)-target prediction, binding site prediction, virtual screening, and allosteric modulation analysis. We address the heterogeneity of integration approaches and individual methods, while acknowledging their current limitations and highlighting their potential to bring drugs for personalized oncological therapies to the market faster.
Collapse
Affiliation(s)
- Marina Gorostiola González
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Antonius P A Janssen
- Oncode Institute, Utrecht, The Netherlands; Molecular Physiology, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Gerard J P van Westen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands.
| |
Collapse
|
10
|
In-Vivo and Ex-Vivo Brain Uptake Studies of Peptidomimetic Neurolysin Activators in Healthy and Stroke Animals. Pharm Res 2022; 39:1587-1598. [PMID: 35239135 DOI: 10.1007/s11095-022-03218-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Neurolysin (Nln) is a peptidase that functions to preserve the brain following ischemic stroke by hydrolyzing various neuropeptides. Nln activation has emerged as an attractive drug discovery target for treatment of ischemic stroke. Among first-in-class peptidomimetic Nln activators, we selected three lead compounds (9d, 10c, 11a) for quantitative pharmacokinetic analysis to provide valuable information for subsequent preclinical development. METHODS Pharmacokinetic profile of these compounds was studied in healthy and ischemic stroke-induced mice after bolus intravenous administration. Brain concentration and brain uptake clearance (Kin) was calculated from single time point analysis. The inter-relationship between LogP with in-vitro and in-vivo permeability was studied to determine CNS penetration. Brain slice uptake method was used to study tissue binding, whereas P-gp-mediated transport was evaluated to understand the potential brain efflux of these compounds. RESULTS According to calculated parameters, all three compounds showed a detectable amount in the brain after intravenous administration at 4 mg/kg; however, 11a had the highest brain concentration and brain uptake clearance. A strong correlation was documented between in-vitro and in-vivo permeability data. The efflux ratio of 10c was ~6-fold higher compared to 11a and correlated well with its lower Kin value. In experimental stroke animals, the Kin of 11a was significantly higher in ischemic vs. contralateral and intact hemispheres, though it remained below its A50 value required to activate Nln. CONCLUSIONS Collectively, these preclinical pharmacokinetic studies reveal promising BBB permeability of 11a and indicate that it can serve as an excellent lead for developing improved drug-like Nln activators.
Collapse
|
11
|
Saklani P, Khan H, Gupta S, Kaur A, Singh TG. Neuropeptides: Potential neuroprotective agents in ischemic injury. Life Sci 2022; 288:120186. [PMID: 34852271 DOI: 10.1016/j.lfs.2021.120186] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
AIM Ischemic damage to the brain is linked to an increased rate of morbidity and mortality worldwide. In certain parts of the world, it remains a leading cause of mortality and the primary cause of long-term impairment. Ischemic injury is exacerbated when particular neuropeptides are removed, or their function in the brain is blocked, whereas supplying such neuropeptides lowers ischemic harm. Here, we have discussed the role of neuropeptides in ischemic injury. MATERIALS & METHODS Numerous neuropeptides had their overexpression following cerebral ischemia. Neuropeptides such as NPY, CGRP, CART, SP, BK, PACAP, oxytocin, nociception, neurotensin and opioid peptides act as transmitters, documented in several "in vivo" and "in vitro" studies. Neuropeptides provide neuroprotection by activating the survival pathways or inhibiting the death pathways, i.e., MAPK, BDNF, Nitric Oxide, PI3k/Akt and NF-κB. KEY FINDINGS Neuropeptides have numerous beneficial effects in ischemic models, including antiapoptotic, anti-inflammatory, and antioxidant actions that provide a powerful protective impact in neurons when combined. These innovative therapeutic substances have the potential to treat ischemia injury due to their pleiotropic modes of action. SIGNIFICANCE This review emphasizes the neuroprotective role of neuropeptides in ischemic injury via modulation of various signalling pathways i.e., MAPK, BDNF, Nitric Oxide, PI3k/Akt and NF-κB.
Collapse
Affiliation(s)
- Priyanka Saklani
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | |
Collapse
|
12
|
Jayaraman S, Kocot J, Esfahani SH, Wangler NJ, Uyar A, Mechref Y, Trippier PC, Abbruscato TJ, Dickson A, Aihara H, Ostrov DA, Karamyan VT. Identification and Characterization of Two Structurally Related Dipeptides that Enhance Catalytic Efficiency of Neurolysin. J Pharmacol Exp Ther 2021; 379:191-202. [PMID: 34389655 PMCID: PMC8626779 DOI: 10.1124/jpet.121.000840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022] Open
Abstract
Neurolysin (Nln) is a recently recognized endogenous mechanism functioning to preserve the brain from ischemic injury. To further understand the pathophysiological function of this peptidase in stroke and other neurologic disorders, the present study was designed to identify small molecule activators of Nln. Using a computational approach, the structure of Nln was explored, which was followed by docking and in silico screening of ∼140,000 molecules from the National Cancer Institute Developmental Therapeutics Program database. Top ranking compounds were evaluated in an Nln enzymatic assay, and two hit histidine-dipeptides were further studied in detail. The identified dipeptides enhanced the rate of synthetic substrate hydrolysis by recombinant (human and rat) and mouse brain-purified Nln in a concentration-dependent manner (micromolar A50 and Amax ≥ 300%) but had negligible effect on activity of closely related peptidases. Both dipeptides also enhanced hydrolysis of Nln endogenous substrates neurotensin, angiotensin I, and bradykinin and increased efficiency of the synthetic substrate hydrolysis (Vmax/Km ratio) in a concentration-dependent manner. The dipeptides and competitive inhibitor dynorphin A (1-13) did not affect each other's affinity for Nln, suggesting differing nature of their respective binding sites. Lastly, drug affinity responsive target stability (DARTS) and differential scanning fluorimetry (DSF) assays confirmed concentration-dependent interaction of Nln with the activator molecule. This is the first study demonstrating that Nln activity can be enhanced by small molecules, although the peptidic nature and low potency of the activators limit their application. The identified dipeptides provide a chemical scaffold to develop high-potency, drug-like molecules as research tools and potential drug leads. SIGNIFICANCE STATEMENT: This study describes discovery of two molecules that selectively enhance activity of peptidase Nln-a newly recognized cerebroprotective mechanism in the poststroke brain. The identified molecules will serve as a chemical scaffold for development of drug-like molecules to further study Nln and may become lead structures for a new class of drugs. In addition, our conceptual and methodological framework and research findings might be used for other peptidases and enzymes, the activation of which bears therapeutic potential.
Collapse
Affiliation(s)
- Srinidhi Jayaraman
- Department of Pharmaceutical Sciences (S.J., J.K., S.H.E., N.J.W., T.J.A., V.T.K.) and Center for Blood Brain Barrier Research (T.J.A., V.T.K.), School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan (A.U., A.D.); Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas (Y.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska (P.C.T.); Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota (H.A.); and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida (D.A.O.)
| | - Joanna Kocot
- Department of Pharmaceutical Sciences (S.J., J.K., S.H.E., N.J.W., T.J.A., V.T.K.) and Center for Blood Brain Barrier Research (T.J.A., V.T.K.), School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan (A.U., A.D.); Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas (Y.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska (P.C.T.); Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota (H.A.); and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida (D.A.O.)
| | - Shiva Hadi Esfahani
- Department of Pharmaceutical Sciences (S.J., J.K., S.H.E., N.J.W., T.J.A., V.T.K.) and Center for Blood Brain Barrier Research (T.J.A., V.T.K.), School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan (A.U., A.D.); Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas (Y.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska (P.C.T.); Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota (H.A.); and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida (D.A.O.)
| | - Naomi J Wangler
- Department of Pharmaceutical Sciences (S.J., J.K., S.H.E., N.J.W., T.J.A., V.T.K.) and Center for Blood Brain Barrier Research (T.J.A., V.T.K.), School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan (A.U., A.D.); Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas (Y.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska (P.C.T.); Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota (H.A.); and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida (D.A.O.)
| | - Arzu Uyar
- Department of Pharmaceutical Sciences (S.J., J.K., S.H.E., N.J.W., T.J.A., V.T.K.) and Center for Blood Brain Barrier Research (T.J.A., V.T.K.), School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan (A.U., A.D.); Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas (Y.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska (P.C.T.); Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota (H.A.); and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida (D.A.O.)
| | - Yehia Mechref
- Department of Pharmaceutical Sciences (S.J., J.K., S.H.E., N.J.W., T.J.A., V.T.K.) and Center for Blood Brain Barrier Research (T.J.A., V.T.K.), School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan (A.U., A.D.); Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas (Y.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska (P.C.T.); Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota (H.A.); and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida (D.A.O.)
| | - Paul C Trippier
- Department of Pharmaceutical Sciences (S.J., J.K., S.H.E., N.J.W., T.J.A., V.T.K.) and Center for Blood Brain Barrier Research (T.J.A., V.T.K.), School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan (A.U., A.D.); Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas (Y.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska (P.C.T.); Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota (H.A.); and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida (D.A.O.)
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences (S.J., J.K., S.H.E., N.J.W., T.J.A., V.T.K.) and Center for Blood Brain Barrier Research (T.J.A., V.T.K.), School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan (A.U., A.D.); Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas (Y.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska (P.C.T.); Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota (H.A.); and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida (D.A.O.)
| | - Alex Dickson
- Department of Pharmaceutical Sciences (S.J., J.K., S.H.E., N.J.W., T.J.A., V.T.K.) and Center for Blood Brain Barrier Research (T.J.A., V.T.K.), School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan (A.U., A.D.); Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas (Y.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska (P.C.T.); Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota (H.A.); and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida (D.A.O.)
| | - Hideki Aihara
- Department of Pharmaceutical Sciences (S.J., J.K., S.H.E., N.J.W., T.J.A., V.T.K.) and Center for Blood Brain Barrier Research (T.J.A., V.T.K.), School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan (A.U., A.D.); Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas (Y.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska (P.C.T.); Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota (H.A.); and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida (D.A.O.)
| | - David A Ostrov
- Department of Pharmaceutical Sciences (S.J., J.K., S.H.E., N.J.W., T.J.A., V.T.K.) and Center for Blood Brain Barrier Research (T.J.A., V.T.K.), School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan (A.U., A.D.); Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas (Y.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska (P.C.T.); Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota (H.A.); and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida (D.A.O.)
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences (S.J., J.K., S.H.E., N.J.W., T.J.A., V.T.K.) and Center for Blood Brain Barrier Research (T.J.A., V.T.K.), School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan (A.U., A.D.); Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas (Y.M.); Department of Pharmaceutical Sciences, College of Pharmacy and Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska (P.C.T.); Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota (H.A.); and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida (D.A.O.)
| |
Collapse
|
13
|
Rahman MS, Kumari S, Esfahani SH, Nozohouri S, Jayaraman S, Kinarivala N, Kocot J, Baez A, Farris D, Abbruscato TJ, Karamyan VT, Trippier PC. Discovery of First-in-Class Peptidomimetic Neurolysin Activators Possessing Enhanced Brain Penetration and Stability. J Med Chem 2021; 64:12705-12722. [PMID: 34436882 DOI: 10.1021/acs.jmedchem.1c00759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptidase neurolysin (Nln) is an enzyme that functions to cleave various neuropeptides. Upregulation of Nln after stroke has identified the enzyme as a critical endogenous cerebroprotective mechanism and validated target for the treatment of ischemic stroke. Overexpression of Nln in a mouse model of stroke results in dramatic improvement of stroke outcomes, while pharmacological inhibition aggravates them. Activation of Nln has therefore emerged as an intriguing target for drug discovery efforts for ischemic stroke. Herein, we report the discovery and hit-to-lead optimization of first-in-class Nln activators based on histidine-containing dipeptide hits identified from a virtual screen. Adopting a peptidomimetic approach provided lead compounds that retain the pharmacophoric histidine moiety and possess single-digit micromolar potency over 40-fold greater than the hit scaffolds. These compounds exhibit 5-fold increased brain penetration, significant selectivity over highly homologous peptidases, greater than 65-fold increase in mouse brain stability, and 'drug-like' fraction unbound in the brain.
Collapse
Affiliation(s)
- Md Shafikur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Shikha Kumari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Shiva Hadi Esfahani
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Srinidhi Jayaraman
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Nihar Kinarivala
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Joanna Kocot
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Andrew Baez
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Delaney Farris
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States.,Center for Blood Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States.,Center for Blood Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
14
|
Delayed Exercise-induced Upregulation of Angiogenic Proteins and Recovery of Motor Function after Photothrombotic Stroke in Mice. Neuroscience 2021; 461:57-71. [PMID: 33667592 DOI: 10.1016/j.neuroscience.2021.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/02/2023]
Abstract
Treatments promoting post-stroke functional recovery continue to be an unmet therapeutic problem with physical rehabilitation being the most reproduced intervention in preclinical and clinical studies. Unfortunately, physiotherapy is typically effective at high intensity and early after stroke - requirements that are hardly attainable by stroke survivors. The aim of this study was to directly evaluate and compare the dose-dependent effect of delayed physical rehabilitation (daily 5 h or overnight voluntary wheel running; initiated on post-stroke day 7 and continuing through day 21) on recovery of motor function in the mouse photothrombotic model of ischemic stroke and correlate it with angiogenic potential of the brain. Our observations indicate that overnight but not 5 h access to running wheels facilitates recovery of motor function in mice in grid-walking test. Western blotting and immunofluorescence microscopy experiments evaluating the expression of angiogenesis-associated proteins VEGFR2, doppel and PDGFRβ in the peri-infarct and corresponding contralateral motor cortices indicate substantial upregulation of these proteins (≥2-fold) in the infarct core and surrounding cerebral cortex in the overnight running mice on post-stroke day 21. These findings indicate that there is a dose-dependent relationship between the extent of voluntary exercise, motor recovery and expression of angiogenesis-associated proteins in this expert-recommended mouse ischemic stroke model. Notably, our observations also point out to enhanced angiogenesis and presence of pericytes within the infarct core region during the chronic phase of stroke, suggesting a potential contribution of this tissue area in the mechanisms governing post-stroke functional recovery.
Collapse
|
15
|
Karamyan VT. Between two storms, vasoactive peptides or bradykinin underlie severity of COVID-19? Physiol Rep 2021; 9:e14796. [PMID: 33687143 PMCID: PMC7941673 DOI: 10.14814/phy2.14796] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to be a world-wide pandemic with overwhelming socioeconomic impact. Since inflammation is one of the major causes of COVID-19 complications, the associated molecular mechanisms have been the focus of many studies to better understand this disease and develop improved treatments for patients contracting SARS-CoV-2. Among these, strong emphasis has been placed on pro-inflammatory cytokines, associating severity of COVID-19 with so-called "cytokine storm." More recently, peptide bradykinin, its dysregulated signaling or "bradykinin storm," has emerged as a primary mechanism to explain COVID-19-related complications. Unfortunately, this important development may not fully capture the main molecular players that underlie the disease severity. To this end, in this focused review, several lines of evidence are provided to suggest that in addition to bradykinin, two closely related vasoactive peptides, substance P and neurotensin, are also likely to drive microvascular permeability and inflammation, and be responsible for development of COVID-19 pathology. Furthermore, based on published experimental observations, it is postulated that in addition to ACE and neprilysin, peptidase neurolysin (Nln) is also likely to contribute to accumulation of bradykinin, substance P and neurotensin, and progression of the disease. In conclusion, it is proposed that "vasoactive peptide storm" may underlie severity of COVID-19 and that simultaneous inhibition of all three peptidergic systems could be therapeutically more advantageous rather than modulation of any single mechanism alone.
Collapse
Affiliation(s)
- Vardan T. Karamyan
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier ResearchSchool of PharmacyTTUHSCAmarilloTXUSA
| |
Collapse
|
16
|
Al Shoyaib A, Alamri FF, Syeara N, Jayaraman S, Karamyan ST, Arumugam TV, Karamyan VT. The Effect of Histone Deacetylase Inhibitors Panobinostat or Entinostat on Motor Recovery in Mice After Ischemic Stroke. Neuromolecular Med 2021; 23:471-484. [PMID: 33590407 DOI: 10.1007/s12017-021-08647-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Using rigorous and clinically relevant experimental design and analysis standards, in this study, we investigated the potential of histone deacetylase (HDAC) inhibitors panobinostat and entinostat to enhance recovery of motor function after photothrombotic stroke in male mice. Panobinostat, a pan-HDAC inhibitor, is a FDA-approved drug for certain cancers, whereas entinostat is a class-I HDAC inhibitor in late stage of clinical investigation. The drugs were administered every other day (panobinostat-3 or 10 mg/kg; entinostat-1.7 or 5 mg/kg) starting from day 5 to 15 after stroke. To imitate the current standard of care in stroke survivors, i.e., physical rehabilitation, the animals run on wheels (2 h daily) from post-stroke day 9 to 41. The predetermined primary end point was motor recovery measured in two tasks of spontaneous motor behaviors in grid-walking and cylinder tests. In addition, we evaluated the running distance and speed throughout the study, and the number of parvalbumin-positive neurons in medial agranular cortex (AGm) and infarct volumes at the end of the study. Both sensorimotor tests revealed that combination of physical exercise with either drug did not substantially affect motor recovery in mice after stroke. This was accompanied by negligible changes of parvalbumin-positive neurons recorded in AGm and comparable infarct volumes among experimental groups, while dose-dependent increase in acetylated histone 3 was observed in peri-infarct cortex of drug-treated animals. Our observations suggest that add-on panobinostat or entinostat therapy coupled with limited physical rehabilitation is unlikely to offer therapeutic modality for stroke survivors who have motor dysfunction.
Collapse
Affiliation(s)
- Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), 1300 Coulter Street, Amarillo, TX, 79106, USA
| | - Faisal F Alamri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), 1300 Coulter Street, Amarillo, TX, 79106, USA.,College of Sciences and Health Profession, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Nausheen Syeara
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), 1300 Coulter Street, Amarillo, TX, 79106, USA
| | - Srinidhi Jayaraman
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), 1300 Coulter Street, Amarillo, TX, 79106, USA
| | - Serob T Karamyan
- Department of Pharmacology, Faculty of Pharmacy, Yerevan State Medical University, Yerevan, Armenia
| | - Thiruma V Arumugam
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), 1300 Coulter Street, Amarillo, TX, 79106, USA. .,Center for Blood Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, USA.
| |
Collapse
|
17
|
Al-Ahmad AJ, Pervaiz I, Karamyan VT. Neurolysin substrates bradykinin, neurotensin and substance P enhance brain microvascular permeability in a human in vitro model. J Neuroendocrinol 2021; 33:e12931. [PMID: 33506602 PMCID: PMC8166215 DOI: 10.1111/jne.12931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022]
Abstract
Increased brain microvascular permeability and disruption of blood-brain barrier (BBB) function are among hallmarks of several acute neurodegenerative disorders, including stroke. Numerous studies suggest the involvement of bradykinin (BK), neurotensin (NT) and substance P (SP) in BBB impairment and oedema formation after stroke; however, there is paucity of data in regard to the direct effects of these peptides on the brain microvascular endothelial cells (BMECs) and BBB. The present study aimed to evaluate the direct effects of BK, NT and SP on the permeability of BBB in an in vitro model based on human induced pluripotent stem cell (iPSC)-derived BMECs. Our data indicate that all three peptides increase BBB permeability in a concentration-dependent manner in an in vitro model formed from two different iPSC lines (CTR90F and CTR65M) and widely used hCMEC/D3 human BMECs. The combination of BK, NT and SP at a sub-effective concentration also resulted in increased BBB permeability in the iPSC-derived model indicating potentiation of their action. Furthermore, we observed abrogation of BK, NT and SP effects with pretreatment of pharmacological blockers targeting their specific receptors. Additional mechanistic studies indicate that the short-term effects of these peptides are not mediated through alteration of tight-junction proteins claudin-5 and occludin, but likely involve redistribution of F-actin and secretion of vascular endothelial growth factor. This is the first experimental study to document the increased permeability of the BBB in response to direct action of NT in an in vitro model. In addition, our study confirms the expected but not well-documented, direct effect of SP on BBB permeability and adds to the well-recognised actions of BK on BBB. Lastly, we demonstrate that peptidase neurolysin can neutralise the effects of these peptides on BBB, suggesting potential therapeutic implications.
Collapse
Affiliation(s)
- Abraham J Al-Ahmad
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| | - Iqra Pervaiz
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| |
Collapse
|
18
|
Alamri FF, Al Shoyaib A, Syeara N, Paul A, Jayaraman S, Karamyan ST, Arumugam TV, Karamyan VT. Delayed atomoxetine or fluoxetine treatment coupled with limited voluntary running promotes motor recovery in mice after ischemic stroke. Neural Regen Res 2021; 16:1244-1251. [PMID: 33318401 PMCID: PMC8284259 DOI: 10.4103/1673-5374.301031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Currently, there is an unmet need for treatments promoting post-stroke functional recovery. The aim of this study was to evaluate and compare the dose-dependent effect of delayed atomoxetine or fluoxetine therapy (starting on post-stroke day 5), coupled with limited physical exercise (2 hours daily voluntary wheel running; post-stroke days 9 to 42), on motor recovery of adult male mice after photothrombotic stroke. These drugs are selective norepinephrine or serotonin reuptake inhibitors indicated for disorders unrelated to stroke. The predetermined primary end-point for this study was motor function measured in two tasks of spontaneous motor behaviors in grid-walking and cylinder tests. Additionally, we quantified the running distance and speed throughout the study, the number of parvalbumin-positive neurons in the medial agranular cortex and infarct volumes. Both sensorimotor tests revealed that neither limited physical exercise nor a drug treatment alone significantly facilitated motor recovery in mice after stroke. However, combination of physical exercise with either of the drugs promoted restoration of motor function by day 42 post-stroke, with atomoxetine being a more potent drug. This was accompanied by a significant decrease in parvalbumin-positive inhibitory interneurons in the ipsilateral medial agranular cortex of mice with recovering motor function, while infarct volumes were comparable among experimental groups. If further validated in larger studies, our observations suggest that add-on atomoxetine or fluoxetine therapy coupled with limited, structured physical rehabilitation could offer therapeutic modality for stroke survivors who have difficulty to engage in early, high-intensity physiotherapy. Furthermore, in light of the recently completed Assessment oF FluoxetINe In sTroke recoverY (AFFINITY) and Efficacy oF Fluoxetine-a randomisEd Controlled Trial in Stroke (EFFECTS) trials, our observations call for newly designed studies where fluoxetine or atomoxetine pharmacotherapy is evaluated in combination with structured physical rehabilitation rather than alone. This study was approved by the Texas Tech University Health Sciences Center Institutional Animal Care and Use Committee (protocol # 16019).
Collapse
Affiliation(s)
- Faisal F Alamri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Current address: College of Sciences and Health Profession, King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical, Research Center, Jeddah, Saudi Arabia
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Nausheen Syeara
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Anisha Paul
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Srinidhi Jayaraman
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Serob T Karamyan
- Department of Pharmacology, Faculty of Pharmacy, Yerevan State Medical University, Yerevan, Armenia
| | - Thiruma V Arumugam
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences; Center for Blood Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|