1
|
Mo J, Liao W, Du J, Huang X, Li Y, Su A, Zhong L, Gong M, Wang P, Liu Z, Kuang H, Wang L. Buyang huanwu decoction improves synaptic plasticity of ischemic stroke by regulating the cAMP/PKA/CREB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118636. [PMID: 39089658 DOI: 10.1016/j.jep.2024.118636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke is an acute central nervous system disease that poses a threat to human health. It induces a series of severe pathological mechanisms, ultimately leading to neuronal cell death in the brain due to local ischemia and hypoxia. Buyang Huanwu decoction (BYHWD), as a representative formula for treating ischemic stroke, has shown good therapeutic effects in stroke patients. AIM OF THE STUDY This study aimed to explore the mechanism of BYHWD in promoting neural remodeling after ischemic stroke from the perspective of neuronal synaptic plasticity, based on the cAMP/PKA/CREB signaling pathway. MATERIALS AND METHODS A modified suture technique was employed to establish a rat model of MCAO. The rats were divided into sham, model, and BYHWD (20 g/kg) groups. After the corresponding intervention, rat brains from each group were collected. TMT quantitative proteomics technology was employed for the research. Following proteomics studies, we investigated the mechanism of BYHWD in the intervention of ischemic stroke through animal experiments and cell experiments. The experimental animals were divided into sham, model, and BYHWD (5 g/kg, 10 g/kg, and 20 g/kg) groups. Infarct volume and severity of brain injury were measured by TTC staining. HE staining was utilized to evaluate alterations in tissue morphology. The Golgi staining was used to observe changes in cell body, dendrites, and dendritic spines. Transmission electron microscopy was used to observe the ultrastructure of synapses in the cortex and hippocampus. TUNEL staining was conducted to identify apoptotic neurons. Meanwhile, a stable and reliable (OGD/R) SH-SY5Y cell model was established. The effect of BYHWD-containing serum on SH-SY5Y cell viability was measured by CCK-8 kit. The apoptosis situation of SH-SY5Y cells was determined by Annexin V-FITC/PI. Immunofluorescence was employed to measure the fluorescence intensity of synaptic-related factors Syt1, Psd95, and Syn1. Synaptic plasticity pathways were assessed by using RT-qPCR and Western blot to determine the expression levels of cAMP, Psd95, Prkacb, Creb1/p-Creb1, BDNF, Shank2, Syn1, Syt1, Bcl-2, Bcl-2/Bax mRNA and proteins. RESULTS After treatment with BYHWD, notable alterations were detected in the signaling pathways linked to synaptic plasticity and the cAMP signaling pathway-related targets among the intervention targets. This trend of change was also reflected in other bioinformatics analyses, indicating the important role of synaptic plasticity changes before and after modeling and drug intervention. The results of vivo and vitro experiments showed that BYHWD improved local pathological changes, and reduced cerebral infarct volume, and neurological function scores in MCAO rats. It increased dendritic spine density, improved synaptic structural plasticity, and had a certain neuroprotective effect. BYHWD increased the postsynaptic membrane thickness, synaptic interface curvature, and synaptic quantity. 10% BYHWD-containing serum was determined as the optimal concentration for treatment. 10% BYHWD-containing serum significantly reduced the overall apoptotic rate of (OGD/R) SH-SY5Y cells. Immunofluorescence experiments demonstrated that 10% BYHWD-containing serum could improve synaptic plasticity and increase the relative expression levels of synaptic-related proteins Syt1, Psd95, and Syn1. BYHWD and decoction-containing serum upregulated the mRNA and protein expression levels in (OGD/R) SH-SY5Y cells and MCAO rats, suggesting its ability to improve damaged neuronal synaptic plasticity and enhance transmission efficiency, which might be achieved through the regulation of the cAMP/PKA/CREB pathway. CONCLUSIONS This study may provide a basis for clinical medication by elucidating the underlying experimental evidence for the promotion of neural plasticity after ischemic stroke by BYHWD.
Collapse
Affiliation(s)
- Jingyuan Mo
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Weiguo Liao
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China; Maoming Maternal and Child Health Hospital, Maoming, Guangdong, 525000, People's Republic of China
| | - Jinyan Du
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xiaoling Huang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yaxin Li
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Anyu Su
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Lanying Zhong
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Mingyu Gong
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Pengcheng Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Zai Liu
- Pharmacy Department, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, 523000, People's Republic of China.
| | - Huizhen Kuang
- Pharmacy Department, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, 523000, People's Republic of China.
| | - Lisheng Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China.
| |
Collapse
|
2
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
3
|
Koirala S, Samanta S, Kar P. Identification of inhibitors for neurodegenerative diseases targeting dual leucine zipper kinase through virtual screening and molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:457-482. [PMID: 38855951 DOI: 10.1080/1062936x.2024.2363195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Neurodegenerative diseases lead to a gradual decline in cognitive and motor functions due to the progressive loss of neurons in the central nervous system. The role of dual leucine zipper kinase (DLK) in regulating stress responses and neuronal death pathways highlights its significance as a target against neurodegenerative diseases. The non-availability of FDA-approved drugs emphasizes a need to identify novel DLK-inhibitors. We screened NPAtlas (Natural products) and MedChemExpress (FDA-approved) libraries to identify potent ATP-competitive DLK inhibitors. ADMET analyses identified four compounds (two natural products and two FDA-approved) with favourable features. Subsequently, we performed molecular dynamics simulations to examine the binding-stability and ligand-induced conformational dynamics. Molecular mechanics Poisson Boltzmann surface area (MM-PBSA) calculations demonstrated CID139591660, dithranol, and danthron having greater affinity, while CID156581477 showed lower affinity than control sunitinib. PCA and network analysis results indicated structural and network alteration post-ligand binding. Furthermore, we identified an analogue of CID156581477 using the deep learning-based web server DeLA Drug which demonstrated a higher affinity than its parent compound and the control and identified several crucial interacting residues. Overall, our study provides significant theoretical guidance for designing potent novel DLK inhibitors and compounds that could emerge as promising drug candidates against DLK following laboratory validation.
Collapse
Affiliation(s)
- S Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - S Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - P Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
4
|
Sears JC, Broadie K. Use-Dependent, Untapped Dual Kinase Signaling Localized in Brain Learning Circuitry. J Neurosci 2024; 44:e1126232024. [PMID: 38267256 PMCID: PMC10957217 DOI: 10.1523/jneurosci.1126-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Imaging brain learning and memory circuit kinase signaling is a monumental challenge. The separation of phases-based activity reporter of kinase (SPARK) biosensors allow circuit-localized studies of multiple interactive kinases in vivo, including protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) signaling. In the precisely-mapped Drosophila brain learning/memory circuit, we find PKA and ERK signaling differentially enriched in distinct Kenyon cell connectivity nodes. We discover that potentiating normal circuit activity induces circuit-localized PKA and ERK signaling, expanding kinase function within new presynaptic and postsynaptic domains. Activity-induced PKA signaling shows extensive overlap with previously selective ERK signaling nodes, while activity-induced ERK signaling arises in new connectivity nodes. We find targeted synaptic transmission blockade in Kenyon cells elevates circuit-localized ERK induction in Kenyon cells with normally high baseline ERK signaling, suggesting lateral and feedback inhibition. We discover overexpression of the pathway-linking Meng-Po (human SBK1) serine/threonine kinase to improve learning acquisition and memory consolidation results in dramatically heightened PKA and ERK signaling in separable Kenyon cell circuit connectivity nodes, revealing both synchronized and untapped signaling potential. Finally, we find that a mechanically-induced epileptic seizure model (easily shocked "bang-sensitive" mutants) has strongly elevated, circuit-localized PKA and ERK signaling. Both sexes were used in all experiments, except for the hemizygous male-only seizure model. Hyperexcitable, learning-enhanced, and epileptic seizure models have comparably elevated interactive kinase signaling, suggesting a common basis of use-dependent induction. We conclude that PKA and ERK signaling modulation is locally coordinated in use-dependent spatial circuit dynamics underlying seizure susceptibility linked to learning/memory potential.
Collapse
Affiliation(s)
- James C Sears
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| | - Kendal Broadie
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Vanderbilt Kennedy Center, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| |
Collapse
|
5
|
Zhu Z, Tao X, Dai T, Wu J, Han C, Huang P, Gong W. Cognitive-exercise dual-task attenuates chronic cerebral ischemia-induced cognitive impairment by activating cAMP/PKA pathway through inhibiting EphrinA3/EphA4. Exp Neurol 2024; 372:114617. [PMID: 38007209 DOI: 10.1016/j.expneurol.2023.114617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/03/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND The prevalence of vascular cognitive impairment induced by chronic cerebral ischemia (CCI) is increasing year by year. Cognitive-exercise dual-task intervention has shown beneficial effects on improving cognitive performance in ischemic patients. It is well known that the tyrosine kinase ligand-receptor (Ephrin-Eph) system plays an important role in synaptic transmission and that the cAMP/PKA pathway is associated with cognitive function. However, it is unclear whether they are responsible for the dual-task improving cognitive impairment in CCI. METHODS Bilateral common carotid artery occlusion (BCCAO) in SD rats was used to establish the CCI model. The effects of dual-task and single-task on cognitive function and the expressions of EphrinA3, EphA4, cAMP, and PKA in rats were detected by the novel object recognition (NOR) test, immunofluorescence staining, quantitative real-time polymerase chain reaction (qPCR), and Western blotting (WB), respectively. Overexpression or knockdown of EphrinA3 in astrocytes or rats were constructed by lentivirus infection to verify the effects of EphrinA3/EphA4 on the cAMP/PKA pathway. RESULTS After dual-task intervention, the discrimination index of rats increased significantly compared with the rats in the CCI group. The expressions of EphrinA3 and EphA4 were decreased, while the expressions of cAMP and PKA were increased. Furthermore, knockdown of EphrinA3 alleviated the trend of CCI-induced cognitive decline in rats and OGD-stimulated cellular damage. It also increased cAMP/PKA expression in hippocampal neurons. CONCLUSION Cognitive-exercise dual-task can significantly improve the cognitive impairment induced by CCI, and this effect may be better than that of the cognitive or exercise single-task intervention. The improvement may be related to the inhibition of EphrinA3/EphA4, followed by activation of the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Ziman Zhu
- Beijing Rehabilitation Hospital, Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing 100144, China
| | - Xue Tao
- Department of Research, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Tengteng Dai
- The Second Clinical Medical College of Yunnan University of Chinese Medicine, Yunnan 650500, China
| | - Jilin Wu
- Beijing Rehabilitation Hospital, Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing 100144, China
| | - Conglin Han
- Rehabilitation Medicine Academy, Weifang Medical University, Shandong 261053, China
| | - Peiling Huang
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Weijun Gong
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China.
| |
Collapse
|
6
|
Werner B, Yadav S. Phosphoregulation of the septin cytoskeleton in neuronal development and disease. Cytoskeleton (Hoboken) 2023; 80:275-289. [PMID: 36127729 PMCID: PMC10025170 DOI: 10.1002/cm.21728] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/13/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
Septins are highly conserved GTP-binding proteins that oligomerize and form higher order structures. The septin cytoskeleton plays an important role in cellular organization, intracellular transport, and cytokinesis. Kinase-mediated phosphorylation of septins regulates various aspects of their function, localization, and dynamics. Septins are enriched in the mammalian nervous system where they contribute to neurodevelopment and neuronal function. Emerging research has implicated aberrant changes in septin cytoskeleton in several human diseases. The mechanisms through which aberrant phosphorylation by kinases contributes to septin dysfunction in neurological disorders are poorly understood and represent an important question for future research with therapeutic implications. This review summarizes the current state of knowledge of the diversity of kinases that interact with and phosphorylate mammalian septins, delineates how phosphoregulation impacts septin dynamics, and describes how aberrant septin phosphorylation contributes to neurological disorders.
Collapse
Affiliation(s)
- Bailey Werner
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Welsh CL, Allen S, Madan LK. Setting sail: Maneuvering SHP2 activity and its effects in cancer. Adv Cancer Res 2023; 160:17-60. [PMID: 37704288 PMCID: PMC10500121 DOI: 10.1016/bs.acr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Since the discovery of tyrosine phosphorylation being a critical modulator of cancer signaling, proteins regulating phosphotyrosine levels in cells have fast become targets of therapeutic intervention. The nonreceptor protein tyrosine phosphatase (PTP) coded by the PTPN11 gene "SHP2" integrates phosphotyrosine signaling from growth factor receptors into the RAS/RAF/ERK pathway and is centrally positioned in processes regulating cell development and oncogenic transformation. Dysregulation of SHP2 expression or activity is linked to tumorigenesis and developmental defects. Even as a compelling anti-cancer target, SHP2 was considered "undruggable" for a long time owing to its conserved catalytic PTP domain that evaded drug development. Recently, SHP2 has risen from the "undruggable curse" with the discovery of small molecules that manipulate its intrinsic allostery for effective inhibition. SHP2's unique domain arrangement and conformation(s) allow for a truly novel paradigm of inhibitor development relying on skillful targeting of noncatalytic sites on proteins. In this review we summarize the biological functions, signaling properties, structural attributes, allostery and inhibitors of SHP2.
Collapse
Affiliation(s)
- Colin L Welsh
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sarah Allen
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, United States
| | - Lalima K Madan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
8
|
Jonnakuti VS, Wagner EJ, Maletić-Savatić M, Liu Z, Yalamanchili HK. PolyAMiner-Bulk: A Machine Learning Based Bioinformatics Algorithm to Infer and Decode Alternative Polyadenylation Dynamics from bulk RNA-seq data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.523471. [PMID: 36747700 PMCID: PMC9900750 DOI: 10.1101/2023.01.23.523471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
More than half of human genes exercise alternative polyadenylation (APA) and generate mRNA transcripts with varying 3' untranslated regions (UTR). However, current computational approaches for identifying cleavage and polyadenylation sites (C/PASs) and quantifying 3'UTR length changes from bulk RNA-seq data fail to unravel tissue- and disease-specific APA dynamics. Here, we developed a next-generation bioinformatics algorithm and application, PolyAMiner-Bulk, that utilizes an attention-based machine learning architecture and an improved vector projection-based engine to infer differential APA dynamics accurately. When applied to earlier studies, PolyAMiner-Bulk accurately identified more than twice the number of APA changes in an RBM17 knockdown bulk RNA-seq dataset compared to current generation tools. Moreover, on a separate dataset, PolyAMiner-Bulk revealed novel APA dynamics and pathways in scleroderma pathology and identified differential APA in a gene that was identified as being involved in scleroderma pathogenesis in an independent study. Lastly, we used PolyAMiner-Bulk to analyze the RNA-seq data of post-mortem prefrontal cortexes from the ROSMAP data consortium and unraveled novel APA dynamics in Alzheimer's Disease. Our method, PolyAMiner-Bulk, creates a paradigm for future alternative polyadenylation analysis from bulk RNA-seq data.
Collapse
Affiliation(s)
- Venkata Soumith Jonnakuti
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
- Program in Quantitative and Computational Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eric J. Wagner
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Mirjana Maletić-Savatić
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Zhandong Liu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
- Program in Quantitative and Computational Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hari Krishna Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030, USA
| |
Collapse
|
9
|
Chen B, Hu H, Chen X. From Basic Science to Clinical Practice: The Role of Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A)/p90 in Cancer. Front Genet 2023; 14:1110656. [PMID: 36911405 PMCID: PMC9998691 DOI: 10.3389/fgene.2023.1110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A), initially reported as a tumor-associated antigen (known as p90), is highly expressed in most solid and hematological tumors. The interaction of CIP2A/p90, protein phosphatase 2A (PP2A), and c-Myc can hinder the function of PP2A toward c-Myc S62 induction, thus stabilizing c-Myc protein, which represents a potential role of CIP2A/p90 in tumorigeneses such as cell proliferation, invasion, and migration, as well as cancer drug resistance. The signaling pathways and regulation networks of CIP2A/p90 are complex and not yet fully understood. Many previous studies have also demonstrated that CIP2A/p90 can be used as a potential therapeutic cancer target. In addition, the autoantibody against CIP2A/p90 in sera may be used as a promising biomarker in the diagnosis of certain types of cancer. In this Review, we focus on recent advances relating to CIP2A/p90 and their implications for future research.
Collapse
Affiliation(s)
- Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| | - Huihui Hu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| | - Xiaobing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Vaneynde P, Verbinnen I, Janssens V. The role of serine/threonine phosphatases in human development: Evidence from congenital disorders. Front Cell Dev Biol 2022; 10:1030119. [PMID: 36313552 PMCID: PMC9608770 DOI: 10.3389/fcell.2022.1030119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Reversible protein phosphorylation is a fundamental regulation mechanism in eukaryotic cell and organismal physiology, and in human health and disease. Until recently, and unlike protein kinases, mutations in serine/threonine protein phosphatases (PSP) had not been commonly associated with disorders of human development. Here, we have summarized the current knowledge on congenital diseases caused by mutations, inherited or de novo, in one of 38 human PSP genes, encoding a monomeric phosphatase or a catalytic subunit of a multimeric phosphatase. In addition, we highlight similar pathogenic mutations in genes encoding a specific regulatory subunit of a multimeric PSP. Overall, we describe 19 affected genes, and find that most pathogenic variants are loss-of-function, with just a few examples of gain-of-function alterations. Moreover, despite their widespread tissue expression, the large majority of congenital PSP disorders are characterised by brain-specific abnormalities, suggesting a generalized, major role for PSPs in brain development and function. However, even if the pathogenic mechanisms are relatively well understood for a small number of PSP disorders, this knowledge is still incomplete for most of them, and the further identification of downstream targets and effectors of the affected PSPs is eagerly awaited through studies in appropriate in vitro and in vivo disease models. Such lacking studies could elucidate the exact mechanisms through which these diseases act, and possibly open up new therapeutic avenues.
Collapse
Affiliation(s)
- Pieter Vaneynde
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Iris Verbinnen
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
- *Correspondence: Veerle Janssens,
| |
Collapse
|
11
|
Li J, Bi H. Integrated Strategy of Network Pharmacology and in vitro Screening to Identify Mechanism of Diazinon-induced Hippocampal Neurotoxicity. Neurotoxicology 2022; 92:122-130. [DOI: 10.1016/j.neuro.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 10/16/2022]
|
12
|
Phosphoproteome profiling of hippocampal synaptic plasticity. Biochem Biophys Res Commun 2022; 626:92-99. [DOI: 10.1016/j.bbrc.2022.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
|
13
|
Chen J, Zhu H, Wang R, Su X, Ruan Z, Pan Y, Peng Q. Functional Dissection of Protein Kinases in Sexual Development and Female Receptivity of Drosophila. Front Cell Dev Biol 2022; 10:923171. [PMID: 35757001 PMCID: PMC9220291 DOI: 10.3389/fcell.2022.923171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Protein phosphorylation is crucial for a variety of biological functions, but how it is involved in sexual development and behavior is rarely known. In this study, we performed a screen of RNA interference targeting 177 protein kinases in Drosophila and identified 13 kinases involved in sexual development in one or both sexes. We further identified that PKA and CASK promote female sexual behavior while not affecting female differentiation. Knocking down PKA or CASK in about five pairs of pC1 neurons in the central brain affects the fine projection but not cell number of these pC1 neurons and reduces virgin female receptivity. We also found that PKA and CASK signaling is required acutely during adulthood to promote female sexual behavior. These results reveal candidate kinases required for sexual development and behaviors and provide insights into how kinases would regulate neuronal development and physiology to fine tune the robustness of sexual behaviors.
Collapse
Affiliation(s)
- Jiangtao Chen
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Huan Zhu
- School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Rong Wang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xiangbin Su
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Zongcai Ruan
- School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Qionglin Peng
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
14
|
Chapman CA, Nuwer JL, Jacob TC. The Yin and Yang of GABAergic and Glutamatergic Synaptic Plasticity: Opposites in Balance by Crosstalking Mechanisms. Front Synaptic Neurosci 2022; 14:911020. [PMID: 35663370 PMCID: PMC9160301 DOI: 10.3389/fnsyn.2022.911020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023] Open
Abstract
Synaptic plasticity is a critical process that regulates neuronal activity by allowing neurons to adjust their synaptic strength in response to changes in activity. Despite the high proximity of excitatory glutamatergic and inhibitory GABAergic postsynaptic zones and their functional integration within dendritic regions, concurrent plasticity has historically been underassessed. Growing evidence for pathological disruptions in the excitation and inhibition (E/I) balance in neurological and neurodevelopmental disorders indicates the need for an improved, more "holistic" understanding of synaptic interplay. There continues to be a long-standing focus on the persistent strengthening of excitation (excitatory long-term potentiation; eLTP) and its role in learning and memory, although the importance of inhibitory long-term potentiation (iLTP) and depression (iLTD) has become increasingly apparent. Emerging evidence further points to a dynamic dialogue between excitatory and inhibitory synapses, but much remains to be understood regarding the mechanisms and extent of this exchange. In this mini-review, we explore the role calcium signaling and synaptic crosstalk play in regulating postsynaptic plasticity and neuronal excitability. We examine current knowledge on GABAergic and glutamatergic synapse responses to perturbances in activity, with a focus on postsynaptic plasticity induced by short-term pharmacological treatments which act to either enhance or reduce neuronal excitability via ionotropic receptor regulation in neuronal culture. To delve deeper into potential mechanisms of synaptic crosstalk, we discuss the influence of synaptic activity on key regulatory proteins, including kinases, phosphatases, and synaptic structural/scaffolding proteins. Finally, we briefly suggest avenues for future research to better understand the crosstalk between glutamatergic and GABAergic synapses.
Collapse
Affiliation(s)
| | | | - Tija C. Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Sears JC, Broadie K. Temporally and Spatially Localized PKA Activity within Learning and Memory Circuitry Regulated by Network Feedback. eNeuro 2022; 9:ENEURO.0450-21.2022. [PMID: 35301221 PMCID: PMC8982635 DOI: 10.1523/eneuro.0450-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/18/2022] [Accepted: 03/12/2022] [Indexed: 12/02/2022] Open
Abstract
Dynamic functional connectivity within brain circuits requires coordination of intercellular signaling and intracellular signal transduction. Critical roles for cAMP-dependent protein kinase A (PKA) signaling are well established in the Drosophila mushroom body (MB) learning and memory circuitry, but local PKA activity within this well-mapped neuronal network is uncharacterized. Here, we use an in vivo PKA activity sensor (PKA-SPARK) to test spatiotemporal regulatory requirements in the MB axon lobes. We find immature animals have little detectable PKA activity, whereas postcritical period adults show high field-selective activation primarily in just 3/16 defined output regions. In addition to the age-dependent PKA activity in distinct α'/β' lobe nodes, females show sex-dependent elevation compared with males in these same restricted regions. Loss of neural cell body Fragile X mental retardation protein (FMRP) and Rugose [human Neurobeachin (NBEA)] suppresses localized PKA activity, whereas overexpression (OE) of MB lobe PKA-synergist Meng-Po (human SBK1) promotes PKA activity. Elevated Meng-Po subverts the PKA age-dependence, with elevated activity in immature animals, and spatial-restriction, with striking γ lobe activity. Testing circuit signaling requirements with temperature-sensitive shibire (human Dynamin) blockade, we find broadly expanded PKA activity within the MB lobes. Using transgenic tetanus toxin to block MB synaptic output, we find greatly heightened PKA activity in virtually all MB lobe fields, although the age-dependence is maintained. We conclude spatiotemporally restricted PKA activity signaling within this well-mapped learning/memory circuit is age-dependent and sex-dependent, driven by FMRP-Rugose pathway activation, temporally promoted by Meng-Po kinase function, and restricted by output neurotransmission providing network feedback.
Collapse
Affiliation(s)
- James C Sears
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN 37235
- Department of Pharmacology, Vanderbilt University and Medical Center, Nashville, TN 37235
| |
Collapse
|
16
|
Bai X, Gao M, Li Y, Chen H, Ma X, Bai H, Liu Y, Hu X, Suo Z. Upregulation of RCAN1.4 in spinal dorsal horn is involved in inflammatory pain hypersensitivity. Neurosci Lett 2022; 775:136538. [DOI: 10.1016/j.neulet.2022.136538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
|
17
|
Dremencov E, Jezova D, Barak S, Gaburjakova J, Gaburjakova M, Kutna V, Ovsepian SV. Trophic factors as potential therapies for treatment of major mental disorders. Neurosci Lett 2021; 764:136194. [PMID: 34433100 DOI: 10.1016/j.neulet.2021.136194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022]
Abstract
Notwithstanding major advances in psychotherapeutics, their efficacy and specificity remain limited. The slow onset of beneficial outcomes and numerous adverse effects of widely used medications remain of chief concern, warranting in-depth studies. The majority of frontline therapies are thought to enhance the endogenous monoaminergic drive, to initiate a cascade of molecular events leading to lasting functional and structural plasticity. They also involve alterations in trophic factor signalling, including brain-derived neurotrophic factor (BDNF), VGF (non-acronymic), vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), glial cell-derived neurotrophic factor (GDNF), and others. In several major mental disorders, emerging data suggest protective and restorative effects of trophic factors in preclinical models, when applied on their own. Antidepressant outcomes of VGF and FGF2, for instance, were shown in experimental animals, while BDNF and GDNF prove useful in the treatment of addiction, schizophrenia, and autism spectrum disorders. The main challenge with the effective translation of these and other findings in the clinic is the knowledge gap in action mechanisms with potential risks, as well as the lack of effective platforms for validation under clinical settings. Herein, we review the state-of-the-art and advances in the therapeutic use of trophic factors in several major neuropsychiatric disorders.
Collapse
Affiliation(s)
- Eliyahu Dremencov
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Segev Barak
- School of Psychological Sciences and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Jana Gaburjakova
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viera Kutna
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Saak V Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| |
Collapse
|
18
|
YU JINGTONG, ZHAO CHUNXIA, GU XIAOYU, DI GUOQING, XU YAQIAN. IMPACTS OF STATIC ELECTRIC FIELD PRODUCED BY ULTRA-HIGH-VOLTAGE DIRECT-CURRENT TRANSMISSION LINES ON HIPPOCAMPAL PROTEIN EXPRESSION AND MORPHOLOGICAL STRUCTURE IN MICE. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421400716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Static electric field (SEF) from ultra-high-voltage direct-current (UHVDC) transmission lines has the potential to produce neurobiological effects. To explore these effects and elucidate their potential mechanisms, protein expression levels and morphological structure in the hippocampi of mice were investigated after SEF exposure. Mice from the Institute of Cancer Research were exposed to an environmental SEF induced by UHVDC transmission lines with the strength of 9.20–21.85[Formula: see text]kV/m for 35 days. Mouse body weight was measured weekly during the exposure. After the exposure, hippocampal Ca[Formula: see text]/calmodulin-dependent protein kinase II (CaMKII) and calcineurin (CaN) expression levels were assayed by Western blot. Hippocampal pathologic morphology and ultrastructure were observed using light microscopy and transmission electron microscopy, respectively. No significant differences in body weight, CaMKII and CaN expression levels, and hippocampal pathologic morphology were observed between mice in the exposed and the control groups. However, cytoplasmic vacuolization of the hippocampal neurons was observed in the exposed group. Thus, hippocampal neuron ultrastructure damage may be a mechanism of SEF-exposure-induced memory decline in mice.
Collapse
Affiliation(s)
- JINGTONG YU
- College of Science and Technology, Ningbo University, Ningbo 315212, P. R. China
| | - CHUNXIA ZHAO
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo 315000, P. R. China
| | - XIAOYU GU
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - GUOQING DI
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - YAQIAN XU
- College of Science and Technology, Ningbo University, Ningbo 315212, P. R. China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
19
|
Understanding stress: Insights from rodent models. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100013. [PMID: 36246514 PMCID: PMC9559100 DOI: 10.1016/j.crneur.2021.100013] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 02/01/2023] Open
Abstract
Through incorporating both physical and psychological forms of stressors, a variety of rodent models have provided important insights into the understanding of stress physiology. Rodent models also have provided significant information with regards to the mechanistic basis of the pathophysiology of stress-related disorders such as anxiety disorders, depressive illnesses, cognitive impairment and post-traumatic stress disorder. Additionally, rodent models of stress have served as valuable tools in the area of drug screening and drug development for treatment of stress-induced conditions. Although rodent models do not accurately reproduce the biochemical or physiological parameters of stress response and cannot fully mimic the natural progression of human disorders, yet, animal research has provided answers to many important scientific questions. In this review article, important studies utilizing a variety of stress models are described in terms of their design and apparatus, with specific focus on their capabilities to generate reliable behavioral and biochemical read-out. The review focusses on the utility of rodent models by discussing examples in the literature that offer important mechanistic insights into physiologically relevant questions. The review highlights the utility of rodent models of stress as important tools for advancing the mission of scientific research and inquiry. Stressful life events may lead to the onset of severe psychopathologies in humans. Rodents may model many features of stress exposure in human populations. Induction of stress via pharmacological and psychological manipulations alter rodent behavior. Mechanistic rodent studies reveal key molecular targets critical for new therapeutic targets.
Collapse
|