1
|
Wang Y, Xie Y, Liu P, Lv H, Guan M, Cong J, Wang Y, Xu Y. Metformin attenuated depressive-like behaviors by suppressing TRPV1/NLRP3 mediated neuroinflammation in the hypothalamus of allergic rhinitis mice. Neuroscience 2025; 571:52-61. [PMID: 39848563 DOI: 10.1016/j.neuroscience.2025.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
In addition to nasal symptoms, allergic rhinitis (AR) has increasingly been reported to be associated with depression-like behaviors. Recent evidence suggests that neuroinflammation in the hypothalamus may cause these depressive symptoms in AR. However, the precise mechanisms and effective treatments remain to be elucidated. This study investigated the ameliorative effects of metformin on neuroinflammation in the hypothalamus, depressive-like behavior and the underlying molecular mechanisms of AR mice. Mice were administered ovalbumin (OVA) intranasally to induce allergic rhinitis and subsequently subjected to behavioral experiments to detect depressive-like behavior. The roles of the TRPV1/NLRP3 pathway in depression-like behaviors in AR were examined in vivo. Additionally, the mechanism of TRPV1/NLRP3-mediated neuroinflammation was investigated in vitro. Finally, metformin was utilized to explore its possible mechanisms and efficacy in treating depressive-like behavior in AR. AR mice exhibited significant depressive-like behavior, which was attenuated by metformin. The number of Iba-1+ microglia significantly increased in the hypothalamus of AR mice. The expression of NLRP3 was significantly upregulated in the hypothalamus, activating microglia. Metformin ameliorated the neuropsychiatric symptoms by reducing NLRP3 expression in the hypothalamus. Moreover, metformin inhibited LPS-induced upregulation of the TRPV1/NLRP3 signaling pathway in microglial cell line, an effect that can be reversed by the TRPV1-specific agonist capsaicin. Increased TRPV1 expression activates the NLRP3 inflammasome in hypothalamic microglia, promoting the pathological process of depressive-like behavior in AR mice. Metformin could effectively treat neuroinflammation by regulating microglia via TRPV1 downregulation, indicating its potential as a treatment for depressive-like behaviors in AR.
Collapse
Affiliation(s)
- Yunfei Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yulie Xie
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengting Guan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianchao Cong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China; Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China.
| |
Collapse
|
2
|
Dhapola R, Kumari S, Sharma P, Vellingiri B, HariKrishnaReddy D. Advancements in autophagy perturbations in Alzheimer's disease: Molecular aspects and therapeutics. Brain Res 2025; 1851:149494. [PMID: 39922409 DOI: 10.1016/j.brainres.2025.149494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/11/2024] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Emerging evidences suggest that autophagy, a key cellular process responsible for degrading and recycling damaged organelles and proteins, plays a crucial role in maintaining neuronal health. Dysfunctional autophagy has been linked to the pathogenesis of Alzheimer's disease (AD), contributing to the accumulation of misfolded proteins and cellular debris. Molecular mechanisms underlying autophagy dysfunction in AD involve amyloid-beta (Aβ) and tau accumulation, neuroinflammation, mitochondrial dysfunction, oxidative stress and endoplasmic reticulum stress. Disrupted signaling pathways such as TRIB3, Nmnat and BAG3 that regulate key processes like autophagosome initiation, lysosome function, and protein homeostasis also play a crucial role in the pathogenesis. Restoration of autophagy by modulating these molecular and signaling pathways may be an effective therapeutic strategy for AD. Studies have found few drugs targeting autophagy dysregulation in AD. These drugs include metformin that has been found to modulate the expression of TRIB3 for autophagy regulation. Another drug, resveratrol has been reported to augment the activity of Nmnat thus, increases autophagy flux. BACE1 and mTOR inhibitors like arctigenin, nilvadipine and dapagliflozin were also found to restore autophagy. This study elaborates recent advances in signaling and molecular pathways and discusses current and emerging therapeutic interventions targeting autophagy dysfunction in AD.
Collapse
Affiliation(s)
- Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab 151401 Bathinda, Punjab, India.
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401 Punjab, India.
| |
Collapse
|
3
|
Ram K, Kumar K, Singh D, Chopra D, Mani V, Jaggi AS, Singh N. Beneficial effect of lupeol and metformin in mouse model of intracerebroventricular streptozotocin induced dementia. Metab Brain Dis 2024; 39:661-678. [PMID: 38842663 DOI: 10.1007/s11011-024-01364-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
This study examines the effectiveness of lupeol and metformin in a mouse model of dementia generated by intracerebroventricular streptozotocin (i.c.v., STZ). Dementia was induced in Swiss mice with the i.c.v. administration of STZ at a dosage of 3 mg/kg on the first and third day. The assessment of dementia involved an examination of the Morris Water Maze (MWM) performance, as well as a number of biochemical and histological studies. STZ treatment resulted in significant decrease in MWM performance; various biochemical alterations (increase in brain acetyl cholinesterase (AChE) activity, thiobarbituric acid reactive species (TBARS), nitrite/nitrate, and reduction in nuclear factor erythroid 2 related factor-2 (Nrf-2), reduced glutathione (GSH) levels) and neuroinflammation [increased myeloperoxidase (MPO) activity & neutrophil infiltration]. The administration of Lupeol (50 mg/kg & 100 mg/kg; p.o.) and Metformin (150 mg/kg & 300 mg/kg; p.o.) demonstrated a considerable reduction in the behavioral, biochemical, and histological alterations produced by STZ. Low dose combination of lupeol (50 mg/kg; p.o.) and Metformin (150 mg/kg; p.o.) produced more pronounced effect than that of high doses of either agent alone. It is concluded that Lupeol and Metformin has shown efficacy in dementia with possible synergism between the two and can be explored as potential therapeutic agents for managing dementia of Alzheimer's disease (AD) type.
Collapse
Affiliation(s)
- Khagesh Ram
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, 135001, Yamunanagar, HRY, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Dimple Chopra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassin University, 51452, Buraydah, Saudi Arabia
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
4
|
Tang H, Guo J, Shaaban CE, Feng Z, Wu Y, Magoc T, Hu X, Donahoo WT, DeKosky ST, Bian J. Heterogeneous treatment effects of metformin on risk of dementia in patients with type 2 diabetes: A longitudinal observational study. Alzheimers Dement 2024; 20:975-985. [PMID: 37830443 PMCID: PMC10917005 DOI: 10.1002/alz.13480] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 10/14/2023]
Abstract
INTRODUCTION Little is known about the heterogeneous treatment effects of metformin on dementia risk in people with type 2 diabetes (T2D). METHODS Participants (≥ 50 years) with T2D and normal cognition at baseline were identified from the National Alzheimer's Coordinating Center database (2005-2021). We applied a doubly robust learning approach to estimate risk differences (RD) with a 95% confidence interval (CI) for dementia risk between metformin use and no use in the overall population and subgroups identified through a decision tree model. RESULTS Among 1393 participants, 104 developed dementia over a 4-year median follow-up. Metformin was significantly associated with a lower risk of dementia in the overall population (RD, -3.2%; 95% CI, -6.2% to -0.2%). We identified four subgroups with varied risks for dementia, defined by neuropsychiatric disorders, non-steroidal anti-inflammatory drugs, and antidepressant use. DISCUSSION Metformin use was significantly associated with a lower risk of dementia in individuals with T2D, with significant variability among subgroups.
Collapse
Affiliation(s)
- Huilin Tang
- Department of Pharmaceutical Outcomes and PolicyUniversity of Florida College of PharmacyGainesvilleFloridaUSA
| | - Jingchuan Guo
- Department of Pharmaceutical Outcomes and PolicyUniversity of Florida College of PharmacyGainesvilleFloridaUSA
- Center for Drug Evaluation and SafetyUniversity of FloridaGainesvilleFloridaUSA
| | - C. Elizabeth Shaaban
- Department of EpidemiologySchool of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
- Alzheimer's Disease Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Zheng Feng
- Department of Health Outcomes and Biomedical InformaticsCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Yonghui Wu
- Department of Health Outcomes and Biomedical InformaticsCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Tanja Magoc
- Clinical and Translational Science InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Xia Hu
- DATA LabDepartment of Computer ScienceRice UniversityHoustonTexasUSA
| | - William T Donahoo
- Department of MedicineCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Steven T. DeKosky
- Department of Neurology and McKnight Brain InstituteCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Florida Alzheimer's Disease Research Center (ADRC)University of FloridaGainesvilleFloridaUSA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical InformaticsCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
5
|
Ozyilmaz ED, Celikkaya R, Comoglu T, Ozakpinar HR, Behzatoglu K. In Vitro and In Vivo Evaluation of Metformin Hydrochloride Hydrogels Developed with Experimental Design in the Treatment of Burns. AAPS PharmSciTech 2023; 24:248. [PMID: 38030938 DOI: 10.1208/s12249-023-02704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Burns alter the normal skin barrier and affect various host defense processes that help prevent infections. An ineffective repair process can lead to serious damage, such as the onset of an infection or skin loss, which can then harm the surrounding tissues and ultimately the entire organism. This study aims to prepare in situ gels containing metformin hydrochloride, a compound known for its wound healing properties. To achieve this, in situ gels were prepared using three different gelling agents (Poloxamer 407®, Carbopol 934®, and sodium carboxymethyl cellulose (Na-CMC)) and three different concentrations of metformin hydrochloride (4 mg/g, 6 mg/g, and 8 mg/g), which were optimized through experimental design. Metformin concentration and gelling agent type were independent variables, and the loaded amount and the percentage of metformin released after 150 min were chosen as dependent variables in the optimization process. After determining the optimum values of the dependent variables according to the ANOVA analysis results, in vivo studies were conducted with optimized hydrogel formulations. Two groups, each consisting of seven Wistar rats with a burn model, were treated with metformin-poloxamer 407® gels at doses of 4 mg/g and 8 mg/g for 29 days. The results were then compared to untreated and placebo gel groups. Rats treated with in situ Poloxamer 407® hydrogels containing metformin hydrochloride showed a significant reduction in the size of the burned area after 29 days of treatment. However, for a comprehensive understanding of the wound healing mechanism, further studies such as immuno-histochemical and cell culture studies are needed.
Collapse
Affiliation(s)
- Emine Dilek Ozyilmaz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Eastern Mediterranean University, North Cyprus via Mersin 10, Famagusta, 99628, Turkey
- Plastic Surgery Clinic, Etlik City Hospital, Ankara, Türkiye
| | - Rojhat Celikkaya
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Türkiye
| | - Tansel Comoglu
- Plastic Surgery Clinic, Etlik City Hospital, Ankara, Türkiye.
| | - Hulda Rifat Ozakpinar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Türkiye
| | - Kemal Behzatoglu
- Pathology Laboratory, Atakent Hospital, Acibadem University, Istanbul, Türkiye
| |
Collapse
|
6
|
Gao Z, Lv H, Wang Y, Xie Y, Guan M, Xu Y. TET2 deficiency promotes anxiety and depression-like behaviors by activating NLRP3/IL-1β pathway in microglia of allergic rhinitis mice. Mol Med 2023; 29:160. [PMID: 38012545 PMCID: PMC10680276 DOI: 10.1186/s10020-023-00757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Anxiety and depression-like behaviors in allergic rhinitis (AR) are attracting attention, while the precise mechanism has not been clearly elucidated. Recent evidence shows that neuroinflammation in anterior cingulate cortex (ACC) may be the core of these neuropsychiatric symptoms in AR. Here, we investigated the molecular link between the anxiety and depression-like behaviors and neuroinflammation in ACC. METHODS Mice were sensitized and challenged with ovalbumin (OVA) to induce AR. Nasal inflammation levels were assessed by H&E staining and PAS staining. Anxiety and depression-like behaviors were evaluated by behavioral experiments including open field test, forced swimming test, and sucrose preference test. Neuronal impairment was characterized via Nissl staining and 18FDG-PET. The role of ten-eleven translocation 2 (TET2) in AR-related anxiety and depression was assessed by Tet2-/- mice. In addition, the murine BV2 microglial cell line was utilized to explore the molecular mechanisms by which TET2 mediates neuroinflammation. The levels of TET2, NLRP3 and their downstream molecules were detected by immunohistochemistry, Western blot, Dot blot and ELISA. The effects of metformin on depression-like behaviors in AR mice were also evaluated. RESULTS AR mice showed significant anxiety and depression-like behaviors, which associated with the activation of ACC. Loss of TET2 activated the NLRP3/IL-1β pathway of microglia in AR mice, further accelerating the anxiety and depression-like behaviors. In addition, knockdown of TET2 activated the NLRP3/IL-1β pathway in BV2 cells. Metformin improved the neuropsychiatric symptoms of AR mice by reducing the activation of NLRP3/IL-1β pathway after upregulating TET2. CONCLUSION TET2 deficiency activates the NLRP3/IL-1β pathway of microglia in the ACC, promoting the pathological process of anxiety and depression-like behavior in AR. Metformin could be effective in treating neuroinflammation by regulating microglia via TET2 up-regulation, indicating that metformin is a potential way to treat anxiety and depression-like behaviors in AR.
Collapse
Affiliation(s)
- Ziang Gao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Soochow Hospital, Suzhou, 215000, China
| | - Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunfei Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yulie Xie
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengting Guan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
7
|
Ponce-Lopez T, González Álvarez Tostado JA, Dias F, Montiel Maltez KH. Metformin Prevents NDEA-Induced Memory Impairments Associated with Attenuating Beta-Amyloid, Tumor Necrosis Factor-Alpha, and Interleukin-6 Levels in the Hippocampus of Rats. Biomolecules 2023; 13:1289. [PMID: 37759689 PMCID: PMC10526195 DOI: 10.3390/biom13091289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
N-nitrosodiethylamine (NDEA) is a potential carcinogen known to cause liver tumors and chronic inflammation, diabetes, cognitive problems, and signs like Alzheimer's disease (AD) in animals. This compound is classified as probably carcinogenic to humans. Usual sources of exposure include food, beer, tobacco, personal care products, water, and medications. AD is characterized by cognitive decline, amyloid-β (Aβ) deposit, tau hyperphosphorylation, and cell loss. This is accompanied by neuroinflammation, which involves release of microglial cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin 1β (IL-1β), by nuclear factor kappa B (NF-κB) upregulation; each are linked to AD progression. Weak PI3K/Akt insulin-signaling inhibits IRS-1 phosphorylation, activates GSK3β and promotes tau hyperphosphorylation. Metformin, an antihyperglycemic agent, has potent anti-inflammatory efficacy. It reduces proinflammatory cytokines such as IL-6, IL-1β, and TNF-α via NF-κB inhibition. Metformin also reduces reactive oxidative species (ROS) and modulates cognitive disorders reported due to brain insulin resistance links. Our study examined how NDEA affects spatial memory in Wistar rats. We found that all NDEA doses tested impaired memory. The 80 µg/kg dose of NDEA increased levels of Aβ1-42, TNF-α, and IL-6 in the hippocampus, which correlated with memory loss. Nonetheless, treatment with 100 mg/kg of metformin attenuated the levels of pro-inflammatory cytokines and Aβ1-42, and enhanced memory. It suggests that metformin may protect against NDEA-triggered memory issues and brain inflammation.
Collapse
Affiliation(s)
- Teresa Ponce-Lopez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Avenida Universidad Anáhuac 46, Lomas Anáhuac, Huixquilucan C.P. 52786, Estado de México, Mexico
| | | | | | | |
Collapse
|
8
|
Battini V, Cirnigliaro G, Leuzzi R, Rissotto E, Mosini G, Benatti B, Pozzi M, Nobile M, Radice S, Carnovale C, Dell’Osso B, Clementi E. The potential effect of metformin on cognitive and other symptom dimensions in patients with schizophrenia and antipsychotic-induced weight gain: a systematic review, meta-analysis, and meta-regression. Front Psychiatry 2023; 14:1215807. [PMID: 37502816 PMCID: PMC10370497 DOI: 10.3389/fpsyt.2023.1215807] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction Metformin has shown good efficacy in the management of antipsychotic-induced metabolic syndrome (MetS) in patients with schizophrenia or schizoaffective disorders. Its ability to induce antidepressant behavioural effects and improve cognitive functions has also been investigated: yet information has not been systematized. The aim of this study was therefore to investigate the effects of metformin on cognitive and other symptom dimension in schizophrenic patients treated with antipsychotics through a systematic review and meta-analysis. Methods We searched PubMed, ClinicalTrials.Gov, Embase, PsycINFO, and WHO ICTRP database up to February 2022, Randomised Controlled Trials (RCT) evaluating patients diagnosed with schizophrenia and related disorders, who were treated with metformin as add-on therapy to antipsychotics for the treatment of weight gain and in which changes in psychiatric symptoms and cognitive functions were evaluated. Results A total of 19 RCTs met the inclusion criteria. Meta-analysis was performed on 12 eligible studies. We found a positive trend after 24 weeks of treatment in schizophrenic patients with stable conditions [SMD (95%CI) = -0.40 (-0.82;0.01), OR (95%CI) = 0.5 (-2.4;3.4)]. Better performance was detected in the Brief Assessment of Cognition in Schizophrenia and Positive and Negative Syndrome Scale (PANSS) with low heterogeneity among studies. One study reported changes in BACS-verbal memory subdomain in favour of placebo [MD (95%CI) = -16.03 (-23.65;8.42)]. Gastrointestinal disorders, xerostomia, and extrapyramidal syndrome were the most reported adverse effects. Psychiatric adverse events were also described: in particular, symptoms attributable to a relapse of schizophrenia. Conclusion Some degree of efficacy was found for Metformin in improving cognitive and other symptom dimensions in patients with Schizophrenia. Given the clinical relevance of this potential pharmacological effect, longer specific studies using adequate psychometric scales are strongly recommended. Likewise, how metformin acts in this context needs to be evaluated in order to enhance its efficacy or find more efficacious drugs.
Collapse
Affiliation(s)
- Vera Battini
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
| | - Giovanna Cirnigliaro
- Department of Biomedical and Clinical Sciences, Psychiatry Unit 2, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
| | - Rodolfo Leuzzi
- Department of Biomedical and Clinical Sciences, Psychiatry Unit 2, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
| | - Eleonora Rissotto
- Department of Biomedical and Clinical Sciences, Psychiatry Unit 2, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
| | - Giulia Mosini
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
| | - Beatrice Benatti
- Department of Biomedical and Clinical Sciences, Psychiatry Unit 2, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
- CRC “Aldo Ravelli” for Neurotechnology & Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Marco Pozzi
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Maria Nobile
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Sonia Radice
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
| | - Bernardo Dell’Osso
- Department of Biomedical and Clinical Sciences, Psychiatry Unit 2, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
- CRC “Aldo Ravelli” for Neurotechnology & Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
- Department of Psychiatry and Behavioral Sciences, Bipolar Disorders Clinic, Stanford Medical School, Stanford University, Stanford, CA, United States
- Centro per lo studio dei meccanismi molecolari alla base delle patologie neuro-psico-geriatriche, Università degli Studi di Milano, Milan, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences, Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, Milan, Italy
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| |
Collapse
|
9
|
Long-term use of metformin and Alzheimer's disease: beneficial or detrimental effects. Inflammopharmacology 2023; 31:1107-1115. [PMID: 36849855 DOI: 10.1007/s10787-023-01163-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 03/01/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by extracellular deposition of amyloid beta (Aβ) leading to cognitive decline. Evidence from epidemiological studies has shown the association between type 2 diabetes mellitus (T2DM) and the development of AD. T2DM and peripheral insulin resistance (IR) augment the risk of AD with the development of brain IR with inhibition of neuronal insulin receptors. These changes impair clearance of Aβ, increase secretion of Aβ1-42, reduce brain glucose metabolism, and abnormal deposition of Aβ plaques. Insulin-sensitizing drug metformin inhibits aggregation of Aβ by increasing the activity of the insulin-degrading enzyme (IDE) and neprilysin (NEP) levels. Additionally, different studies raised conflicting evidence concerning long-term metformin therapy in T2DM patients, as it may increase the risk of AD or it may prevent the progression of AD. Therefore, the objective of this review was to clarify the beneficial and detrimental effects of long-term metformin therapy in T2DM patients and risk of AD. Evidence from clinical trial studies revealed the little effect of metformin on AD. Various animal studies showed that metformin increases Aβ formation by activation of amyloid precursor protein (APP)-cleaving enzymes with the generation of insoluble tau species. Of note, the metformin effect on cognitive function relative to AD pathogenesis is mostly assessed in animal model studies. The duration of metformin therapy was short in most animal studies, this finding cannot apply to the long-term duration of metformin in humans. Therefore, large-scale prospective and comparative studies involving long-term metformin therapy in both diabetic and non-diabetic patients are required to exclude the effect of T2DM-induced AD.
Collapse
|
10
|
Li M, Gao ZL, Zhang QP, Luo AX, Xu WY, Duan TQ, Wen XP, Zhang RQ, Zeng R, Huang JF. Autophagy in glaucoma pathogenesis: Therapeutic potential and future perspectives. Front Cell Dev Biol 2022; 10:1068213. [PMID: 36589756 PMCID: PMC9795220 DOI: 10.3389/fcell.2022.1068213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a common blinding eye disease characterized by progressive loss of retinal ganglion cells (RGCs) and their axons, progressive loss of visual field, and optic nerve atrophy. Autophagy plays a pivotal role in the pathophysiology of glaucoma and is closely related to its pathogenesis. Targeting autophagy and blocking the apoptosis of RGCs provides emerging guidance for the treatment of glaucoma. Here, we provide a systematic review of the mechanisms and targets of interventions related to autophagy in glaucoma and discuss the outlook of emerging ideas, techniques, and multidisciplinary combinations to provide a new basis for further research and the prevention of glaucomatous visual impairment.
Collapse
Affiliation(s)
- Min Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhao-Lin Gao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Quan-Peng Zhang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China,Anatomy Laboratory, Hainan Medical University, Haikou, China
| | - Ai-Xiang Luo
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-Ye Xu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Tian-Qi Duan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xu-Peng Wen
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ru-Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ru Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ju-Fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China,*Correspondence: Ju-Fang Huang,
| |
Collapse
|
11
|
Zhou J, Sun Y, Ji M, Li X, Wang Z. Association of Vitamin B Status with Risk of Dementia in Cohort Studies: A Systematic Review and Meta-Analysis. J Am Med Dir Assoc 2022; 23:1826.e21-1826.e35. [PMID: 35779574 DOI: 10.1016/j.jamda.2022.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To examine the association between B vitamins status and the risk of dementia in older adults through a systematic review and meta-analysis of cohort studies. DESIGN Systematic review and meta-analysis. SETTING AND PARTICIPANTS Older adults aged ≥60 years from community, nursing home, institution, or hospital. METHODS PubMed, Cochrane Library, EMBASE, Web of Science, CINAHL, ClinicalTrials, WHO-ICTRP, NHS Trusts, and ACTR were searched from the date of their inception up to November 28, 2021. We included cohort studies that assessed the association between serum B vitamins or B vitamins intake and the risk of dementia among older adults aged ≥60 years. The quality of all studies was assessed by the modified Newcastle-Ottawa Scale (NOS). The hazard ratios (HRs) and 95% CIs were calculated by the random effects model. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach was used to rate the certainty of evidence. RESULTS Eleven cohort studies with sample sizes ranging from 233 to 3634 were included in the meta-analysis. Levels of serum folate showed statistically significant association with the risk of dementia (≥10 nmol/L: HR 1.57, 95% CI 1.01-2.46, low certainty; <10 nmol/L: HR 0.93, 95% CI 0.88-0.99, very low certainty). However, levels of vitamin B6 intake showed no statistically significant effects on risk of dementia; levels of serum vitamin B12 and vitamin B12 intake also showed no statistically significant effects on risk of dementia in older adults. CONCLUSIONS AND IMPLICATIONS The results from our meta-analysis suggest that vitamin B6, B12, and folate may not be modifiable risk factors for dementia among older adults. Current evidence on the relationship between vitamin B status and dementia is not sufficient for development of vitamin B recommendations. More high-quality cohort studies are needed to confirm the relationship between the two in the future.
Collapse
Affiliation(s)
- Jia Zhou
- School of Nursing, Peking university, Beijing, China
| | - Yue Sun
- School of Nursing, Peking university, Beijing, China
| | - Mengmeng Ji
- School of Nursing, Peking university, Beijing, China
| | - Xinrui Li
- School of Nursing, Peking university, Beijing, China
| | - Zhiwen Wang
- School of Nursing, Peking university, Beijing, China.
| |
Collapse
|
12
|
Yu M, Zheng X, Cheng F, Shao B, Zhuge Q, Jin K. Metformin, Rapamycin, or Nicotinamide Mononucleotide Pretreatment Attenuate Cognitive Impairment After Cerebral Hypoperfusion by Inhibiting Microglial Phagocytosis. Front Neurol 2022; 13:903565. [PMID: 35769369 PMCID: PMC9234123 DOI: 10.3389/fneur.2022.903565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 12/02/2022] Open
Abstract
Vascular cognitive impairment (VCI) is the second leading form of dementia after Alzheimer's disease (AD) plaguing the elder population. Despite the enormous prevalence of VCI, the biological basis of this disease has been much less well-studied than that of AD, with no specific therapy currently existing to prevent or treat VCI. As VCI mainly occurs in the elderly, the role of anti-aging drugs including metformin, rapamycin, and nicotinamide mono nucleotide (NMN), and the underlying mechanism remain uncertain. Here, we examined the role of metformin, rapamycin, and NMN in cognitive function, white matter integrity, microglial response, and phagocytosis in a rat model of VCI by bilateral common carotid artery occlusion (BCCAO). BCCAO-induced chronic cerebral hypoperfusion could cause spatial working memory deficits and white matter lesions (WMLs), along with increasing microglial activation and phagocytosis compared to sham-operated rats. We found the cognitive impairment was significantly improved in BCCAO rats pretreated with these three drugs for 14 days before BCCAO compared with the vehicle group by the analysis of the Morris water maze and new object recognition tests. Pretreatment of metformin, rapamycin, or NMN also increased myelin basic protein (MBP, a marker for myelin) expression and reduced SMI32 (a marker for demyelinated axons) intensity and SMI32/MBP ratio compared with the vehicle group, suggesting that these drugs could ameliorate BCCAO-induced WMLs. The findings were confirmed by Luxol fast blue (LFB) stain, which is designed for staining myelin/myelinated axons. We further found that pretreatment of metformin, rapamycin, or NMN reduced microglial activation and the number of M1 microglia, but increased the number of M2 microglia compared to the vehicle group. Importantly, the number of MBP+/Iba1+/CD68+ microglia was significantly reduced in the BCCAO rats pretreated with these three drugs compared with the vehicle group, suggesting that these drugs suppress microglial phagocytosis. No significant difference was found between the groups pretreated with metformin, rapamycin, or NMN. Our data suggest that metformin, rapamycin, or NMN could protect or attenuate cognitive impairment and WMLs by modifying microglial polarization and inhibiting phagocytosis. The findings may open a new avenue for VCI treatment.
Collapse
Affiliation(s)
- Mengdi Yu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiaoying Zheng
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Fangyu Cheng
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Bei Shao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
- *Correspondence: Qichuan Zhuge
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- Kunlin Jin
| |
Collapse
|
13
|
Influence of Weight Loss on Cognitive Functions: A Pilot Study of a Multidisciplinary Intervention Program for Obesity Treatment. Brain Sci 2022; 12:brainsci12040509. [PMID: 35448040 PMCID: PMC9028728 DOI: 10.3390/brainsci12040509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 02/05/2023] Open
Abstract
There is a relationship between obesity and cognitive functioning. Our aim was to assess weight loss influence on global cognition and executive functioning (EF) in adults with obesity under a multidisciplinary weight loss program. In this six-month longitudinal study, we assessed 81 adults (age < 50 years) with body mass index (BMI) ≥ 30. EF and global cognitive performance were evaluated with the Montreal Cognitive Assessment (MoCA), Neuropsychological Battery of Executive Functions (BANFE-2) and Trail Making Test-Part B (TMT-B). Median age was 40.0 years (IQR: 31.5−47, 61% women), and the median BMI was 41.4 (IQR: 36.7−45.9). At a six-month follow-up, the mean weight loss was 2.67% (29.6% of patients achieved ≥5% weight loss). There was an improvement in EF evaluated with BANFE (p = 0.0024) and global cognition with MoCA (p = 0.0024). Women experienced more remarkable change, especially in EF. Weight loss did not correlate with cognitive performance, except for TMT-B (r-0.258, p = 0.026). In the regression analysis, only years of education predicted the MoCA score. This study showed that patients improved cognitive performance during the follow-up; nevertheless, the magnitude of weight loss did not correlate with cognitive improvement. Future studies are warranted to demonstrate if patients achieving ≥5% weight loss can improve cognition, secondary to weight loss.
Collapse
|
14
|
Poor SR, Ettcheto M, Cano A, Sanchez-Lopez E, Manzine PR, Olloquequi J, Camins A, Javan M. Metformin a Potential Pharmacological Strategy in Late Onset Alzheimer's Disease Treatment. Pharmaceuticals (Basel) 2021; 14:ph14090890. [PMID: 34577590 PMCID: PMC8465337 DOI: 10.3390/ph14090890] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most devastating brain disorders. Currently, there are no effective treatments to stop the disease progression and it is becoming a major public health concern. Several risk factors are involved in the progression of AD, modifying neuronal circuits and brain cognition, and eventually leading to neuronal death. Among them, obesity and type 2 diabetes mellitus (T2DM) have attracted increasing attention, since brain insulin resistance can contribute to neurodegeneration. Consequently, AD has been referred to "type 3 diabetes" and antidiabetic medications such as intranasal insulin, glitazones, metformin or liraglutide are being tested as possible alternatives. Metformin, a first line antihyperglycemic medication, is a 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activator hypothesized to act as a geroprotective agent. However, studies on its association with age-related cognitive decline have shown controversial results with positive and negative findings. In spite of this, metformin shows positive benefits such as anti-inflammatory effects, accelerated neurogenesis, strengthened memory, and prolonged life expectancy. Moreover, it has been recently demonstrated that metformin enhances synaptophysin, sirtuin-1, AMPK, and brain-derived neuronal factor (BDNF) immunoreactivity, which are essential markers of plasticity. The present review discusses the numerous studies which have explored (1) the neuropathological hallmarks of AD, (2) association of type 2 diabetes with AD, and (3) the potential therapeutic effects of metformin on AD and preclinical models.
Collapse
Affiliation(s)
- Saghar Rabiei Poor
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran;
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (P.R.M.)
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (P.R.M.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 08028 Madrid, Spain; (A.C.); (E.S.-L.)
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 08028 Madrid, Spain; (A.C.); (E.S.-L.)
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Elena Sanchez-Lopez
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 08028 Madrid, Spain; (A.C.); (E.S.-L.)
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Patricia Regina Manzine
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (P.R.M.)
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos 13565-905, Brazil
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3467987, Chile;
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (P.R.M.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 08028 Madrid, Spain; (A.C.); (E.S.-L.)
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
- Laboratory of Cellular and Molecular Pathology, Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3467987, Chile;
- Correspondence: (A.C.); (M.J.)
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran;
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14117-13116, Iran
- Correspondence: (A.C.); (M.J.)
| |
Collapse
|