1
|
Hackett MJ. A commentary on studies of brain iron accumulation during ageing. J Biol Inorg Chem 2024; 29:385-394. [PMID: 38735007 PMCID: PMC11186910 DOI: 10.1007/s00775-024-02060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Brain iron content is widely reported to increase during "ageing", across multiple species from nematodes, rodents (mice and rats) and humans. Given the redox-active properties of iron, there has been a large research focus on iron-mediated oxidative stress as a contributor to tissue damage during natural ageing, and also as a risk factor for neurodegenerative disease. Surprisingly, however, the majority of published studies have not investigated brain iron homeostasis during the biological time period of senescence, and thus knowledge of how brain homeostasis changes during this critical stage of life largely remains unknown. This commentary examines the literature published on the topic of brain iron homeostasis during ageing, providing a critique on limitations of currently used experimental designs. The commentary also aims to highlight that although much research attention has been given to iron accumulation or iron overload as a pathological feature of ageing, there is evidence to support functional iron deficiency may exist, and this should not be overlooked in studies of ageing or neurodegenerative disease.
Collapse
Affiliation(s)
- Mark J Hackett
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia.
| |
Collapse
|
2
|
Lee EP, Lin JJ, Chang HP, Yen CW, Hsieh MS, Chan OW, Lin KL, Su YT, Mu CT, Hsia SH. Ferritin as an Effective Predictor of Neurological Outcomes in Children With Acute Necrotizing Encephalopathy. Pediatr Neurol 2024; 152:162-168. [PMID: 38295717 DOI: 10.1016/j.pediatrneurol.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 04/26/2023] [Accepted: 12/31/2023] [Indexed: 02/20/2024]
Abstract
BACKGROUND Acute necrotizing encephalopathy (ANE) is a fulminant disease with poor prognosis. Cytokine storm is the important phenomenon of ANE that affects the brain and multiple organs. The study aimed to identify whether hyperferritinemia was associated with poor prognosis in patients with ANE. METHODS All patients with ANE had multiple symmetric lesions located in the bilateral thalami and other regions such as brainstem tegmentum, cerebral white matter, and cerebellum. Neurological outcome at discharge was evaluated by pediatric neurologists using the Pediatric Cerebral Performance Category Scale. All risk factors associated with poor prognosis were further analyzed using receiver operating characteristic curve analysis. RESULTS Twenty-nine patients with ANE were enrolled in the current study. Nine (31%) patients achieved a favorable neurological outcome, and 20 (69%) patients had poor neurological outcomes. results The group of poor neurological outcome had significantly higher proportion of shock on admission and brainstem involvement. Based on multivariate logistic regression analysis, ferritin, aspartate aminotransferase (AST), and ANE severity score (ANE-SS) were the predictors associated with outcomes. The appropriate cutoff value for predicting neurological outcomes in patients with ANE was 1823 ng/mL for ferritin, 78 U/L for AST, and 4.5 for ANE-SS. Besides, comparison analyses showed that higher level of ferritin and ANE-SS were significantly correlated with brainstem involvement (P < 0.05). CONCLUSIONS Ferritin may potentially be a prognostic factor in patients with ANE. Hyperferritinemia is associated with poor neurological outcomes in patients with ANE and ferritin levels more than 1823 ng/mL have about eightfold increased risk of poor neurological outcome.
Collapse
Affiliation(s)
- En-Pei Lee
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Chang Gung Memorial Hospital at Linko, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jainn-Jim Lin
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Chang Gung Memorial Hospital at Linko, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Han-Pi Chang
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Chang Gung Memorial Hospital at Linko, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Wei Yen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Shun Hsieh
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taoyuan Branch, Taoyuan, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Oi-Wa Chan
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Chang Gung Memorial Hospital at Linko, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuang-Lin Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ya-Ting Su
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Chang Gung Memorial Hospital at Linko, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Ting Mu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Shao-Hsuan Hsia
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Chang Gung Memorial Hospital at Linko, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Mukem S, Sayoh I, Maungchanburi S, Thongbuakaew T. Ebselen, Iron Uptake Inhibitor, Alleviates Iron Overload-Induced Senescence-Like Neuronal Cells SH-SY5Y via Suppressing the mTORC1 Signaling Pathway. Adv Pharmacol Pharm Sci 2023; 2023:6641347. [PMID: 37731679 PMCID: PMC10509000 DOI: 10.1155/2023/6641347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/17/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023] Open
Abstract
Increasing evidence highlights that excessive iron accumulation in the brain plays a vital role in neuronal senescence and is implicated in the pathogenesis of age-related neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Therefore, the chemical compounds that eliminate an iron overload may provide better protection against oxidative stress conditions that cause the accumulation of senescent cells during brain aging. Ebselen has been identified as a strongly useful compound in the research on redox biology mechanisms. We hypothesized that ebselen could alleviate an iron overload-induced oxidative stress and consequently reverses the senescence-like phenotypes in the neuronal cells. In the present study, SH-SY5Y cells were treated with ferric ammonium citrate (FAC) before ebselen, and the evaluation of the cellular iron homeostasis, the indicators of oxidative stress, and the onset of senescence phenotypes and mechanisms were carried out accordingly. Our findings showed that ebselen ameliorated the FAC-mediated iron overload by decreasing the expression of divalent metal transporter 1 (DMT1) and ferritin light chain (FT-L) proteins. In contrast, it increased the expression of ferroportin 1 (FPN1) protein and its correlation led to a decrease in the expression of the cytosolic labile iron pool (LIP). Furthermore, ebselen significantly reduced reactive oxygen species (ROS) and rescued the mitochondrial membrane potential (ΔΨm). Notably, ebselen restored the biomarkers of cellular senescence by reducing the number of senescence-associated β-galactosidase (SA-β-gal) positive cells and senescence-associated secretory phenotypes (SASP). This also suppressed the expression of p53 protein targeting DNA damage response (DDR)/p21 cyclin-dependent kinase (CDK) inhibitor through a mTORC1 signaling pathway. Potentially, ebselen could be a therapeutic agent for treating brain aging and AD by mitigating iron accumulation and restoring senescence in SH-SY5Y cells.
Collapse
Affiliation(s)
- Sirirak Mukem
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Ibrahim Sayoh
- Department of Anatomy, Faculty of Science and Technology, Princess of Naradhiwas University, Narathiwat 96000, Thailand
| | - Saowanee Maungchanburi
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | | |
Collapse
|
4
|
Qian ZM, Li W, Guo Q. Ferroportin1 in the brain. Ageing Res Rev 2023; 88:101961. [PMID: 37236369 DOI: 10.1016/j.arr.2023.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/20/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Despite years of research, it remains unclear why certain brain regions of patients with neurodegenerative diseases (NDs) have abnormally high levels of iron, although it has long been suggested that disrupted expression of iron-metabolizing proteins due to genetic or non-genetic factors is responsible for the enhancement in brain iron contents. In addition to the increased expression of cell-iron importers lactoferrin (lactotransferrin) receptor (LfR) in Parkinson's disease (PD) and melanotransferrin (p97) in Alzheimer's disease (AD), some investigations have suggested that cell-iron exporter ferroportin 1 (Fpn1) may be also associated with the elevated iron observed in the brain. The decreased expression of Fpn1 and the resulting decrease in the amount of iron excreted from brain cells has been thought to be able to enhance iron levels in the brain in AD, PD and other NDs. Cumulative results also suggest that the reduction of Fpn1 can be induced by hepcidin-dependent and -independent pathways. In this article, we discuss the current understanding of Fpn1 expression in the brain and cell lines of rats, mice and humans, with emphasis on the potential involvement of reduced Fpn1 in brain iron enhancement in patients with AD, PD and other NDs.
Collapse
Affiliation(s)
- Zhong-Ming Qian
- Department of Neurology, Affiliated Hospital of Nantong University, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu China 226019.
| | - Wei Li
- Department of Neurology, Affiliated Hospital of Nantong University, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu China 226019
| | - Qian Guo
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, 881 Yonghe Road, Nantong, Jiangsu 226001, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
5
|
Exploring Whether Iron Sequestration within the CNS of Patients with Alzheimer’s Disease Causes a Functional Iron Deficiency That Advances Neurodegeneration. Brain Sci 2023; 13:brainsci13030511. [PMID: 36979320 PMCID: PMC10046656 DOI: 10.3390/brainsci13030511] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
The involvement of iron in the pathogenesis of Alzheimer’s disease (AD) may be multifaceted. Besides potentially inducing oxidative damage, the bioavailability of iron may be limited within the central nervous system, creating a functionally iron-deficient state. By comparing staining results from baseline and modified iron histochemical protocols, iron was found to be more tightly bound within cortical sections from patients with high levels of AD pathology compared to subjects with a diagnosis of something other than AD. To begin examining whether the bound iron could cause a functional iron deficiency, a protein-coding gene expression dataset of initial, middle, and advanced stages of AD from olfactory bulb tissue was analyzed for iron-related processes with an emphasis on anemia-related changes in initial AD to capture early pathogenic events. Indeed, anemia-related processes had statistically significant alterations, and the significance of these changes exceeded those for AD-related processes. Other changes in patients with initial AD included the expressions of transcripts with iron-responsive elements and for genes encoding proteins for iron transport and mitochondrial-related processes. In the latter category, there was a decreased expression for the gene encoding pitrilysin metallopeptidase 1 (PITRM1). Other studies have shown that PITRM1 has an altered activity in patients with AD and is associated with pathological changes in this disease. Analysis of a gene expression dataset from PITRM1-deficient or sufficient organoids also revealed statistically significant changes in anemia-like processes. These findings, together with supporting evidence from the literature, raise the possibility that a pathogenic mechanism of AD could be a functional deficiency of iron contributing to neurodegeneration.
Collapse
|
6
|
Cerebral Iron Deposition in Neurodegeneration. Biomolecules 2022; 12:biom12050714. [PMID: 35625641 PMCID: PMC9138489 DOI: 10.3390/biom12050714] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Disruption of cerebral iron regulation appears to have a role in aging and in the pathogenesis of various neurodegenerative disorders. Possible unfavorable impacts of iron accumulation include reactive oxygen species generation, induction of ferroptosis, and acceleration of inflammatory changes. Whole-brain iron-sensitive magnetic resonance imaging (MRI) techniques allow the examination of macroscopic patterns of brain iron deposits in vivo, while modern analytical methods ex vivo enable the determination of metal-specific content inside individual cell-types, sometimes also within specific cellular compartments. The present review summarizes the whole brain, cellular, and subcellular patterns of iron accumulation in neurodegenerative diseases of genetic and sporadic origin. We also provide an update on mechanisms, biomarkers, and effects of brain iron accumulation in these disorders, focusing on recent publications. In Parkinson’s disease, Friedreich’s disease, and several disorders within the neurodegeneration with brain iron accumulation group, there is a focal siderosis, typically in regions with the most pronounced neuropathological changes. The second group of disorders including multiple sclerosis, Alzheimer’s disease, and amyotrophic lateral sclerosis shows iron accumulation in the globus pallidus, caudate, and putamen, and in specific cortical regions. Yet, other disorders such as aceruloplasminemia, neuroferritinopathy, or Wilson disease manifest with diffuse iron accumulation in the deep gray matter in a pattern comparable to or even more extensive than that observed during normal aging. On the microscopic level, brain iron deposits are present mostly in dystrophic microglia variably accompanied by iron-laden macrophages and in astrocytes, implicating a role of inflammatory changes and blood–brain barrier disturbance in iron accumulation. Options and potential benefits of iron reducing strategies in neurodegeneration are discussed. Future research investigating whether genetic predispositions play a role in brain Fe accumulation is necessary. If confirmed, the prevention of further brain Fe uptake in individuals at risk may be key for preventing neurodegenerative disorders.
Collapse
|