1
|
Liu Y, Liu J, Wang Y, Zhang Y, Peng Z, Li P, Li M, Xue B, Wang Y. Regulation of Neuroimmune Microenvironment by PLA/GO/Anti-TNF-α Composite to Enhance Neurological Repair After Spinal Cord Injury. Int J Nanomedicine 2025; 20:4919-4942. [PMID: 40259915 PMCID: PMC12011040 DOI: 10.2147/ijn.s509954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/14/2025] [Indexed: 04/23/2025] Open
Abstract
Introduction Spinal cord injury (SCI) is a severe neurological condition with limited treatment options. Polylactic acid (PLA)+graphene oxide (GO)+anti-TNF-α (Ab) composites have shown potential in regulating immune responses and promoting neural repair. Methods Electrospinning PLA+GO+Ab materials were characterized using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and X-ray diffraction (XRD). Their effects on neural stem cells (NSCs) and macrophage polarization were evaluated through in vitro assays, including proliferation, migration, differentiation, and flow cytometry. A rat SCI model was used to assess motor function recovery and histological changes. Results PLA+GO+Ab promoted NSC proliferation, migration, and differentiation while inducing macrophage polarization toward the M2 phenotype, reducing inflammation. In the SCI model, PLA+GO+Ab treatment enhanced motor function recovery, reduced spinal cord damage, and promoted axonal regeneration and oligodendrocyte maturation. RNA sequencing identified activation of the Rap1 signaling pathway, contributing to these effects. Discussion PLA+GO+Ab composites effectively modulate the neuroimmune microenvironment, supporting SCI recovery by promoting neural repair and immune regulation. These findings suggest its potential as a therapeutic biomaterial for SCI treatment.
Collapse
Affiliation(s)
- Yishu Liu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Jingsong Liu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Yangyang Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Yubo Zhang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Zhibin Peng
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Pengfei Li
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Mi Li
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Bing Xue
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Yansong Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
2
|
Yari-Ilkhchi A, Hamidi N, Mahkam M, Ebrahimi-Kalan A. Graphene-based materials: an innovative approach for neural regeneration and spinal cord injury repair. RSC Adv 2025; 15:9829-9853. [PMID: 40165920 PMCID: PMC11956154 DOI: 10.1039/d4ra07976k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
Spinal cord injury (SCI), the most serious disease affecting the central nervous system (CNS), is one of contemporary medicine's most difficult challenges, causing patients to suffer physically, emotionally, and socially. However, due to recent advances in medical science and biomaterials, graphene-based materials (GBMs) have tremendous potential in SCI therapy due to their wonderful and valuable properties, such as physicochemical properties, extraordinary electrical conductivity, distinct morphology, and high mechanical strength. This review discusses SCI pathology and GBM characteristics, as well as recent in vitro and in vivo findings on graphenic scaffolds, electrodes, and injectable achievements for SCI improvement using neuroprotective and neuroregenerative techniques to improve neural structural and functional repair. Additionally, it suggests possible ideas and desirable products for graphene-based technological advances, intending to reach therapeutic importance for SCI.
Collapse
Affiliation(s)
- Ayda Yari-Ilkhchi
- Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University 5375171379 Tabriz Iran
- Faculty of Chemical and Metallurgical Engineering, Department of Chemical Engineering, Istanbul Technical University Maslak 34469 Istanbul Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University 34956 Istanbul Turkey
| | - Nazila Hamidi
- Department of Chemistry and Biochemistry, The University of Tulsa Tulsa OK 74104 USA
| | - Mehrdad Mahkam
- Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University 5375171379 Tabriz Iran
| | - Abbas Ebrahimi-Kalan
- Faculty of Advanced Medical Science, Tabriz University of Medical Sciences 5166614733 Tabriz Iran
| |
Collapse
|
3
|
Xing J, Liu S. Application of loaded graphene oxide biomaterials in the repair and treatment of bone defects. Bone Joint Res 2024; 13:725-740. [PMID: 39631429 PMCID: PMC11617066 DOI: 10.1302/2046-3758.1312.bjr-2024-0048.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds' diverse roles and potential applications in bone defect treatment.
Collapse
Affiliation(s)
- Jinyi Xing
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuzhong Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Karimi F, Alizadeh M, Bitaraf FS, Shirshahi V. Enhancing electrical conductivity and mechanical properties of decellularized umbilical cord arteries using graphene coatings. J Biomed Mater Res B Appl Biomater 2024; 112:e35448. [PMID: 38968133 DOI: 10.1002/jbm.b.35448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/24/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024]
Abstract
Traditional decellularized bioscaffolds possessing intact vascular networks and unique architecture have been extensively studied as conduits for repairing nerve damage. However, they are limited by the absence of electrical conductivity, which is crucial for proper functioning of nervous tissue. This study focuses on investigating decellularized umbilical cord arteries by applying coatings of graphene oxide (GO) and reduced graphene oxide (RGO) to their inner surfaces. This resulted in a homogeneous GO coating that fully covered the internal lumen of the arteries. The results of electrical measurements demonstrated that the conductivity of the scaffolds could be significantly enhanced by incorporating RGO and GO conductive sheets. At a low frequency of 0.1 Hz, the electrical resistance level of the coated scaffolds decreased by 99.8% with RGO and 98.21% with GO, compared with uncoated scaffolds. Additionally, the mechanical properties of the arteries improved by 24.69% with GO and 32.9% with RGO after the decellularization process. The GO and RGO coatings did not compromise the adhesion of endothelial cells and promoted cell growth. The cytotoxicity tests revealed that cell survival rate increased over time with RGO, while it decreased with GO, indicating the time-dependent effect on the cytotoxicity of GO and RGO. Blood compatibility evaluations showed that graphene nanomaterials did not induce hemolysis but exhibited some tendency toward blood coagulation.
Collapse
Affiliation(s)
- Fateme Karimi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fateme Sadat Bitaraf
- Department of Basic Sciences, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Vahid Shirshahi
- Department of Basic Sciences, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
5
|
Fischer G, Bättig L, Stienen MN, Curt A, Fehlings MG, Hejrati N. Advancements in neuroregenerative and neuroprotective therapies for traumatic spinal cord injury. Front Neurosci 2024; 18:1372920. [PMID: 38812974 PMCID: PMC11133582 DOI: 10.3389/fnins.2024.1372920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/10/2024] [Indexed: 05/31/2024] Open
Abstract
Traumatic spinal cord injuries (SCIs) continue to be a major healthcare concern, with a rising prevalence worldwide. In response to this growing medical challenge, considerable scientific attention has been devoted to developing neuroprotective and neuroregenerative strategies aimed at improving the prognosis and quality of life for individuals with SCIs. This comprehensive review aims to provide an up-to-date and thorough overview of the latest neuroregenerative and neuroprotective therapies currently under investigation. These strategies encompass a multifaceted approach that include neuropharmacological interventions, cell-based therapies, and other promising strategies such as biomaterial scaffolds and neuro-modulation therapies. In addition, the review discusses the importance of acute clinical management, including the role of hemodynamic management as well as timing and technical aspects of surgery as key factors mitigating the secondary injury following SCI. In conclusion, this review underscores the ongoing scientific efforts to enhance patient outcomes and quality of life, focusing on upcoming strategies for the management of traumatic SCI. Each section provides a working knowledge of the fundamental preclinical and patient trials relevant to clinicians while underscoring the pathophysiologic rationale for the therapies.
Collapse
Affiliation(s)
- Gregor Fischer
- Department of Neurosurgery, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
- Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
| | - Linda Bättig
- Department of Neurosurgery, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
- Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
| | - Martin N. Stienen
- Department of Neurosurgery, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
- Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - Michael G. Fehlings
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nader Hejrati
- Department of Neurosurgery, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
- Spine Center of Eastern Switzerland, Cantonal Hospital St.Gallen, Medical School of St.Gallen, St.Gallen, Switzerland
| |
Collapse
|
6
|
Hashimoto S, Nagoshi N, Nakamura M, Okano H. Regenerative medicine strategies for chronic complete spinal cord injury. Neural Regen Res 2024; 19:818-824. [PMID: 37843217 PMCID: PMC10664101 DOI: 10.4103/1673-5374.382230] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 10/17/2023] Open
Abstract
Spinal cord injury is a condition in which the parenchyma of the spinal cord is damaged by trauma or various diseases. While rapid progress has been made in regenerative medicine for spinal cord injury that was previously untreatable, most research in this field has focused on the early phase of incomplete injury. However, the majority of patients have chronic severe injuries; therefore, treatments for these situations are of fundamental importance. The reason why the treatment of complete spinal cord injury has not been studied is that, unlike in the early stage of incomplete spinal cord injury, there are various inhibitors of neural regeneration. Thus, we assumed that it is difficult to address all conditions with a single treatment in chronic complete spinal cord injury and that a combination of several treatments is essential to target severe pathologies. First, we established a combination therapy of cell transplantation and drug-releasing scaffolds, which contributes to functional recovery after chronic complete transection spinal cord injury, but we found that functional recovery was limited and still needs further investigation. Here, for the further development of the treatment of chronic complete spinal cord injury, we review the necessary approaches to the different pathologies based on our findings and the many studies that have been accumulated to date and discuss, with reference to the literature, which combination of treatments is most effective in achieving functional recovery.
Collapse
Affiliation(s)
- Shogo Hashimoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Yari-Ilkhchi A, Mahkam M, Ebrahimi-Kalan A, Zangbar HS. Design and synthesis of nano-biomaterials based on graphene and local delivery of cerebrolysin into the injured spinal cord of mice, promising neural restoration. NANOSCALE ADVANCES 2024; 6:990-1000. [PMID: 38298594 PMCID: PMC10825937 DOI: 10.1039/d3na00760j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024]
Abstract
Spinal cord injury (SCI) is an incurable and catastrophic health issue with no clinical solution. As part of cascade reactions, the inflammatory process and fibrous glial scar production aggravate the amount of lesion through a secondary damage mechanism, encouraging scientists from other disciplines to investigate new paths for solving this problem. Graphene oxide (GO) and its derivatives are among the most promising biomedical and nerve tissue regeneration materials due to their remarkable chemical, mechanical, and electrical properties. This paper designs and introduces a new GO-based nanomaterial to minimize inflammation and stimulate neurite regrowth. To improve biocompatibility, biodegradability, and cell proliferation, GO plates were modified with polyethylene glycol (PEG) and Au nanoparticles as neuroprotective and antibacterial agents, respectively. Preliminary biological investigations on bone marrow derived mesenchymal stem cells (BM-MSCs) with various concentrations of a graphenic nanocarrier indicated a lack of cell toxicity and an enhancement in BM-MSC proliferation of about 10% after 48 hours. Therapeutic nanostructures were used in the T10 segment of a mouse SCI model. The pathological and immunohistochemical data revealed that refilling tissue cavities, decreasing degeneration, and establishing neuroregeneration resulted in a considerable improvement of hind limb motor function. Furthermore, compared to the nanocomposite mixture alone, the intraspinal delivery of cerebrolysin (CRL) had a more satisfying impact on nerve regrowth, cystic cavity, hemorrhage avoidance, and motor function enhancement. This study demonstrates the potential of graphenic nanomaterials for SCI treatment and neuroregeneration applications.
Collapse
Affiliation(s)
- Ayda Yari-Ilkhchi
- Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University Tabriz Iran 5375171379
- Neuroscience Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences Tabriz Iran
| | - Mehrdad Mahkam
- Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University Tabriz Iran 5375171379
| | - Abbas Ebrahimi-Kalan
- Neuroscience Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences Tabriz Iran
| | - Hamid Soltani Zangbar
- Neuroscience Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
8
|
Yari D, Saberi A, Salmasi Z, Ghoreishi SA, Etemad L, Movaffagh J, Ganjeifar B. Recent Advances in the Treatment of Spinal Cord Injury. THE ARCHIVES OF BONE AND JOINT SURGERY 2024; 12:380-399. [PMID: 38919744 PMCID: PMC11195032 DOI: 10.22038/abjs.2023.73944.3424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/07/2023] [Indexed: 06/27/2024]
Abstract
Spinal cord injury (SCI) is a complex, multifaceted, progressive, and yet incurable complication that can cause irreversible damage to the individual, family, and society. In recent years strategies for the management and rehabilitation of SCI besides axonal regeneration, remyelination, and neuronal plasticity of the injured spinal cord have significantly improved. Although most of the current research and therapeutic advances have been made in animal models, so far, no specific and complete treatment has been reported for SCI in humans. The failure to treat this complication has been due to the inherent neurological complexity and the structural, cellular, molecular, and biochemical characteristics of spinal cord injury. In this review, in addition to elucidating the causes of spinal cord injury from a molecular and pathophysiological perspective, the complexity and drawbacks of neural regeneration that lead to the failure in SCI treatment are described. Also, recent advances and cutting-edge strategies in most areas of SCI treatment are presented.
Collapse
Affiliation(s)
- Davood Yari
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Saberi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Alireza Ghoreishi
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Orthopedic Surgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jebrail Movaffagh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Babak Ganjeifar
- Department of Neurosurgery, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Guo J, Cao G, Wei S, Han Y, Xu P. Progress in the application of graphene and its derivatives to osteogenesis. Heliyon 2023; 9:e21872. [PMID: 38034743 PMCID: PMC10682167 DOI: 10.1016/j.heliyon.2023.e21872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/13/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
As bone and joint injuries from various causes become increasingly prominent, how to effectively reconstruct and repair bone defects presents a difficult problem for clinicians and researchers. In recent years, graphene and its derivatives have been the subject of growing body of research and have been found to promote the proliferation and osteogenic differentiation of stem cells. This provides a new idea for solving the clinical problem of bone defects. However, as as numerous articles address various aspects and have not been fully systematized, there is an urgent need to classify and summarize them. In this paper, for the first time, the effects of graphene and its derivatives on stem cells in solution, in 2D and 3D structures and in vivo and their possible mechanisms are reviewed, and the cytotoxic effects of graphene and its derivatives were summarized and analyzed. The toxicity of graphene and its derivatives is further reviewed. In addition, we suggest possible future development directions of graphene and its derivatives in bone tissue engineering applications to provide a reference for further clinical application.
Collapse
Affiliation(s)
- Jianbin Guo
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Guihua Cao
- Department of Geriatrics, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Song Wei
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yisheng Han
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Peng Xu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Mohebichamkhorami F, Faizi M, Mahmoudifard M, Hajikarim-Hamedani A, Mohseni SS, Heidari A, Ghane Y, Khoramjouy M, Khayati M, Ghasemi R, Zali H, Hosseinzadeh S, Mostafavi E. Microfluidic Synthesis of Ultrasmall Chitosan/Graphene Quantum Dots Particles for Intranasal Delivery in Alzheimer's Disease Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207626. [PMID: 37309299 DOI: 10.1002/smll.202207626] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/26/2023] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) based therapies for Alzheimer's disease (AD) attract interest due to their ability to pass across or bypass the blood-brain barrier. Chitosan (CS) NPs or graphene quantum dots (GQDs) are promising drug carriers with excellent physicochemical and electrical properties. The current study proposes the combination of CS and GQDs in ultrasmall NP form not as drug carriers but as theranostic agents for AD. The microfluidic-based synthesis of the CS/GQD NPs with optimized characteristics makes them ideal for transcellular transfer and brain targeting after intranasal (IN) delivery. The NPs have the ability to enter the cytoplasm of C6 glioma cells in vitro and show dose and time-dependent effects on the viability of the cells. IN administration of the NPs to streptozotocin (STZ) induced AD-like models lead to a significant number of entrances of the treated rats to the target arm in the radial arm water maze (RAWM) test. It shows the positive effect of the NPs on the memory recovery of the treated rats. The NPs are detectable in the brain via in vivo bioimaging due to GQDs as diagnostic markers. The noncytotoxic NPs localize in the myelinated axons of hippocampal neurons. They do not affect the clearance of amyloid β (Aβ) plaques at intercellular space. Moreover, they showed no positive impact on the enhancement of MAP2 and NeuN expression as markers of neural regeneration. The memory improvement in treated AD rats may be due to neuroprotection via the anti-inflammation effect and regulation of the brain tissue microenvironment that needs to be studied.
Collapse
Affiliation(s)
- Fariba Mohebichamkhorami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1968917313, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 19919-53381, Iran
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, 1497716316, Iran
| | | | - Seyedeh Sarvenaz Mohseni
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 19919-53381, Iran
| | - Amirhossein Heidari
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| | - Yekta Ghane
- School of Medicine, Tehran University of Medical Sciences, Tehran, 1461884513, Iran
| | - Mona Khoramjouy
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 19919-53381, Iran
| | - Maryam Khayati
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Rasoul Ghasemi
- Neurophysiology research center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1968917313, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1968917313, Iran
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1968917313, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
11
|
Guo S, Chen J, Yang Y, Li X, Tang Y, Gui Y, Chen J, Xu J. Electroacupuncture-Modulated MiR-106b-5p Expression Enhances Autophagy by Targeting Beclin-1 to Promote Motor Function Recovery After Spinal Cord Injury in Rats. Neurospine 2023; 20:1011-1027. [PMID: 37562442 PMCID: PMC10562236 DOI: 10.14245/ns.2346446.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/24/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVE Electroacupuncture (EA) has a definite effect on the treatment of spinal cord injuries (SCIs), but its underlying molecular mechanism remains unclear. Meanwhile, MiR106b-5p is an autophagy- and apoptosis-related microribonucleic acid, but whether it regulates the progression of autophagy and apoptosis in SCIs is yet undetermined. As such, this study aimed to elucidate the involvement of miR-106b-5p in the EA treatment of an SCI. METHODS The miR-106b-5p level was detected by quantitative real-time polymerase chain reaction. In vitro, SH-SY5Y cells were transfected with miR-106b-5p mimics or inhibitors to regulate the miR-106b-5p expression, while in vivo, SCI rats were treated with EA for 7 days at the bilateral Zusanli (ST36) and Jiaji (EX-B2) acupoints. The motor function was evaluated using the Basso-Beattie-Bresnahan (BBB) criteria. Further, autophagic vacuoles, pathological damage, and neuronal cell morphology were observed by transmission electron microscopy, as well as by hematoxylin and eosin and Nissl staining, respectively. RESULTS The miR-106b-5p level, which can interact directly with Beclin-1 by influencing its expression, as well as the expressions of P62, Caspase-3, and Bax, was upregulated after an SCI, but it decreased after EA. Moreover, the ratio of LC3-II to LC3-I was upregulated after EA. EA can enhance autophagy, reduce neuronal apoptosis, and minimize motor dysfunction and histopathological deficits after an SCI. More importantly, however, all the above effects induced by EA can be reversed after an injection of miR-106-5p agomir to produce an overexpression of miR-106b-5p. CONCLUSION EA treatment could downregulate miR-106b-5p to alleviate SCI-mediated injuries by promoting autophagy and inhibiting apoptosis.
Collapse
Affiliation(s)
- Shuhui Guo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Jianmin Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Ye Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Xiaolu Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yun Tang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yuchang Gui
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Jianquan Chen
- Department of Orthopedics, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi, China
| | - jianwen Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| |
Collapse
|
12
|
Hu X, Xu W, Ren Y, Wang Z, He X, Huang R, Ma B, Zhao J, Zhu R, Cheng L. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:245. [PMID: 37357239 DOI: 10.1038/s41392-023-01477-6] [Citation(s) in RCA: 212] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 06/27/2023] Open
Abstract
Spinal cord injury (SCI) remains a severe condition with an extremely high disability rate. The challenges of SCI repair include its complex pathological mechanisms and the difficulties of neural regeneration in the central nervous system. In the past few decades, researchers have attempted to completely elucidate the pathological mechanism of SCI and identify effective strategies to promote axon regeneration and neural circuit remodeling, but the results have not been ideal. Recently, new pathological mechanisms of SCI, especially the interactions between immune and neural cell responses, have been revealed by single-cell sequencing and spatial transcriptome analysis. With the development of bioactive materials and stem cells, more attention has been focused on forming intermediate neural networks to promote neural regeneration and neural circuit reconstruction than on promoting axonal regeneration in the corticospinal tract. Furthermore, technologies to control physical parameters such as electricity, magnetism and ultrasound have been constantly innovated and applied in neural cell fate regulation. Among these advanced novel strategies and technologies, stem cell therapy, biomaterial transplantation, and electromagnetic stimulation have entered into the stage of clinical trials, and some of them have already been applied in clinical treatment. In this review, we outline the overall epidemiology and pathophysiology of SCI, expound on the latest research progress related to neural regeneration and circuit reconstruction in detail, and propose future directions for SCI repair and clinical applications.
Collapse
Affiliation(s)
- Xiao Hu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Yilong Ren
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Zhaojie Wang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Xiaolie He
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Runzhi Huang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Bei Ma
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Jingwei Zhao
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Rongrong Zhu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| |
Collapse
|
13
|
Feng C, Deng L, Yong YY, Wu JM, Qin DL, Yu L, Zhou XG, Wu AG. The Application of Biomaterials in Spinal Cord Injury. Int J Mol Sci 2023; 24:816. [PMID: 36614259 PMCID: PMC9821025 DOI: 10.3390/ijms24010816] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The spinal cord and the brain form the central nervous system (CNS), which is the most important part of the body. However, spinal cord injury (SCI) caused by external forces is one of the most difficult types of neurological injury to treat, resulting in reduced or even absent motor, sensory and autonomic functions. It leads to the reduction or even disappearance of motor, sensory and self-organizing nerve functions. Currently, its incidence is increasing each year worldwide. Therefore, the development of treatments for SCI is urgently needed in the clinic. To date, surgery, drug therapy, stem cell transplantation, regenerative medicine, and rehabilitation therapy have been developed for the treatment of SCI. Among them, regenerative biomaterials that use tissue engineering and bioscaffolds to transport cells or drugs to the injured site are considered the most promising option. In this review, we briefly introduce SCI and its molecular mechanism and summarize the application of biomaterials in the repair and regeneration of tissue in various models of SCI. However, there is still limited evidence about the treatment of SCI with biomaterials in the clinic. Finally, this review will provide inspiration and direction for the future study and application of biomaterials in the treatment of SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
14
|
Gong W, Zhang T, Che M, Wang Y, He C, Liu L, Lv Z, Xiao C, Wang H, Zhang S. Recent advances in nanomaterials for the treatment of spinal cord injury. Mater Today Bio 2022; 18:100524. [PMID: 36619202 PMCID: PMC9813796 DOI: 10.1016/j.mtbio.2022.100524] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Spinal cord injuries (SCIs) are devastating. In SCIs, a powerful traumatic force impacting the spinal cord results in the permanent loss of nerve function below the injury level, leaving the patient paralyzed and wheelchair-bound for the remainder of his/her life. Unfortunately, clinical treatment that depends on surgical decompression appears to be unable to handle damaged nerves, and high-dose methylprednisolone-based therapy is also associated with problems, such as infection, gastrointestinal bleeding, femoral head necrosis, obesity, and hyperglycemia. Nanomaterials have opened new avenues for SCI treatment. Among them, performance-based nanomaterials derived from a variety of materials facilitate improvements in the microenvironment of traumatic injury and, in some cases, promote neuron regeneration. Nanoparticulate drug delivery systems enable the optimization of drug effects and drug bioavailability, thus contributing to the development of novel treatments. The improved efficiency and accuracy of gene delivery will also benefit the exploration of SCI mechanisms and the understanding of key genes and signaling pathways. Herein, we reviewed different types of nanomaterials applied to the treatment of SCI and summarized their functions and advantages to provide new perspectives for future clinical therapies.
Collapse
Affiliation(s)
- Weiquan Gong
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Tianhui Zhang
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Mingxue Che
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Yongjie Wang
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Chuanyu He
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Lidi Liu
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Zhenshan Lv
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China,Corresponding author.
| | - Shaokun Zhang
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China,Corresponding author. Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
15
|
Shen Y, Cao X, Lu M, Gu H, Li M, Posner DA. Current treatments after spinal cord injury: Cell engineering, tissue engineering, and combined therapies. SMART MEDICINE 2022; 1:e20220017. [PMID: 39188731 PMCID: PMC11235943 DOI: 10.1002/smmd.20220017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/20/2022] [Indexed: 08/28/2024]
Abstract
Both traumatic and non-traumatic spinal cord injuries (SCIs) can be categorized as damages done to our central nervous system (CNS). The patients' physical and mental health may suffer greatly because of traumatic SCI. With the widespread use of motor vehicles and increasingly aged population, the occurrence of SCI is more frequent than before, creating a considerable burden to global public health. The regeneration process of the spinal cord is hampered by a series of events that occur following SCI like edema, hemorrhage, formation of cystic cavities, and ischemia. An effective strategy for the treatment of SCI and functional recovery still has not been discovered; however, recent advances have been made in bioengineering fields that therapies based on cells, biomaterials, and biomolecules have proved effective in the repair of the spinal cord. In the light of worldwide importance of treatments for SCI, this article aims to provide a review of recent advances by first introducing the physiology, etiology, epidemiology, and mechanisms of SCI. We then put emphasis on the widely used clinical treatments and bioengineering strategies (cell-based, biomaterial-based, and biomolecule-based) for the functional regeneration of the spinal cord as well as challenges faced by scientists currently. This article provides scientists and clinicians with a comprehensive outlook on the recent advances of preclinical and clinical treatments of SCI, hoping to help them find keys to the functional regeneration of SCI.
Collapse
Affiliation(s)
- Yingbo Shen
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Xinyue Cao
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Minhui Lu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Hongcheng Gu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Minli Li
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - David A. Posner
- Molecular Immunity UnitCambridge Institute of Therapeutic Immunology and Infectious DiseasesDepartment of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
16
|
Lai Z, Liu H, Liu G. Meta-Analysis on the Effects of Electric Acupuncture on Neural Functional Recovery and Related Pathways of Rats after Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8613384. [PMID: 35937410 PMCID: PMC9355760 DOI: 10.1155/2022/8613384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
Background Spinal cord injury (SCI) is a type of damage to the central nervous system (CNS) caused by various factors. The secondary injury of SCI is more complicated. Studies have found that electroacupuncture can help the recovery of nerve function during spinal cord injury. Therefore, this study explored the efficacy of electroacupuncture on complications after spinal cord injury through meta-analysis. Methods Relevant literatures published from January 2010 to March 2022 were searched with "Electric acupuncture, Spinal cord injury, Neural functional recovery, Spinal cord injury in rats, Neuronal Signaling" as search words. The risk of bias of included references was analyzed and assessed using RevMan 5.3 software and Stata software. Heterogeneity between studies was assessed using the Q-test and heterogeneity (I 2). Results There was no heterogeneity among the study groups. The comparison on the therapeutic effects of electroacupuncture and conventional therapy suggested that electroacupuncture was more effective for nerve recovery after spinal cord injury than conventional therapy. It can better improve the recovery of motor function after spinal cord injury in rats. On the other hand, SCI+EA had a good inhibitory effect on the expression of RhoA protein signal in rats and had a positive effect on the signal pathway. Discussion. The results of meta-analysis confirmed that electroacupuncture was more effective than conventional therapy in inhibiting pathways.
Collapse
Affiliation(s)
- Zengjiao Lai
- Department of Neurorehabilitation, Affiliated Hospital of Inner Mongolia Minzu University, Liaotong, 028000 Inner Mongolia Autonomous Region, China
| | - Huihui Liu
- Heilongjiang University of Chinese Medicine, Harbin, 150001 Heilongjiang Province, China
| | - Guobin Liu
- Department of Rehabilitation Medicine, The First People's Hospital of Kequ, Tongliao, 028000 Inner Mongolia Autonomous Region, China
| |
Collapse
|