1
|
Barbosa T, Morais SL, Pereira E, Magalhães JMCS, Domingues VF, Ferreira-Fernandes H, Pinto G, Santos M, Barroso MF. Warfarin Pharmacogenomics: Designing Electrochemical DNA-Based Sensors to Detect CYP2C9*2 Gene Variation. Genes (Basel) 2025; 16:372. [PMID: 40282332 PMCID: PMC12027050 DOI: 10.3390/genes16040372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The CYP2C9 enzyme is involved in the metabolism of warfarin. The CYP2C9 gene harbors several single-nucleotide polymorphisms (SNPs), including CYP2C9*2 (rs1799853), which is known to affect warfarin's therapeutic response. So, it is important to develop analytical tools capable of genotyping these SNPs to adjust warfarin's therapeutic outcomes. In this work, an electrochemical DNA-based sensor was constructed and optimized for the detection of the CYP2C9*2 polymorphism. METHODS Using bioinformatic database platforms, two 71 base pair DNA target probes with the polymorphic variants A and G were chosen and designed. A DNA-based sensor was composed by mercaptohexanol and the CYP2C9*2 DNA capture probe in a self-assembled monolayer connected to screen-printed gold electrodes. Two independent hybridization events of the CYP2C9*2 allele were designed using complementary fluorescein-labeled DNA signaling to improve selectivity and avoid secondary structures. Three human samples with the homozygous variant (G/G) and non-variant (A/A) and heterozygous (G/A) genotypes were amplified by PCR and then applied to the developed genosensor. RESULTS Chronoamperometry measurements were performed for both polymorphic probes. A calibration curve in the 0.25 to 2.50 nM (LOD of 13 pM) and another in the 0.15 to 5.00 nM range (LOD of 22.6 pM) were obtained for the homozygous non-variant and variant probes, respectively. This innovative tool was capable of identifying the hybridization reaction between two complementary strands of immobilized DNA, representing a genotyping alternative to the classical PCR methodology. CONCLUSIONS The developed electrochemical DNA-based sensor was able to discriminate two synthetic SNP target sequences (Target-A and Target-G) and detect, with specificity, the three patients' genotypes (G/G, G/A, and A/A). This tool is therefore a promising, sensitive, and cost-effective analytical way to determine and discriminate an individual's genotype and predict the appropriate warfarin dose.
Collapse
Affiliation(s)
- Tiago Barbosa
- REQUIMTE/LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (T.B.); (M.S.)
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (S.L.M.); (V.F.D.)
| | - Stephanie L. Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (S.L.M.); (V.F.D.)
| | - Eduarda Pereira
- REQUIMTE/LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (T.B.); (M.S.)
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (S.L.M.); (V.F.D.)
| | - Júlia M. C. S. Magalhães
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Valentina F. Domingues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (S.L.M.); (V.F.D.)
| | - Hygor Ferreira-Fernandes
- Instituto de Educação, Ciência e Tecnologia Do Piauí (IFPI), Departamento de Informação, Ambiente, Saúde e Produção Alimentícia, 64019-368 Teresina, Brazil;
| | - Giovanny Pinto
- Grupo de Estudos Em Genética Humana e Médica (GEHMED), Laboratório de Genética e Biologia Molecular, Departamento de Biomedicina, Universidade do Delta do Parnaíba (UFDPar), 64202-020 Parnaíba, Brazil;
| | - Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (T.B.); (M.S.)
- Grupo de Oncologia Molecular e Patologia Viral, Centro de Investigação, Instituto Português de Oncologia do Porto—Francisco Gentil, Rua Dr. António Bernardino de Almeida 865, 4200-072 Porto, Portugal
| | - Maria Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (S.L.M.); (V.F.D.)
| |
Collapse
|
2
|
Bagher AM. Association of CYP2C9∗3 and CYP2C8∗3 Non-Functional Alleles with Ibuprofen-Induced Upper Gastrointestinal Toxicity in a Saudi Patient. Case Rep Med 2023; 2023:6623269. [PMID: 37520310 PMCID: PMC10382241 DOI: 10.1155/2023/6623269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Ibuprofen is a non-steroidal anti-inflammatory drug (NSAID) widely used to alleviate pain and inflammation. Although it is generally considered safe, common adverse drug reactions of ibuprofen include stomach pain, nausea, and heartburn. It can also cause gastrointestinal (GI) bleeding, especially in individuals with a history of GI ulcers or bleeding disorders. Ibuprofen is predominantly metabolized by the cytochrome P450 (CYP) enzymes CYP2C9 and CYP2C8. Individuals carrying the CYP2C9∗3 or CYP2C8∗3 non-functional alleles have reduced enzyme activities resulting in elevated ibuprofen plasma concentrations and half-life. We presented a case of a 31-year-old Saudi female patient with a history of rheumatoid arthritis (RA) who had taken ibuprofen at 600 mg twice daily for eight weeks. The patient presented to the emergency department with symptoms including nausea, vomiting, severe abdominal pain, and black tarry stools. An emergency esophagogastroduodenoscopy was performed on the patient, which revealed a deep bleeding ulcer measuring 1 × 1 cm in the antrum of the stomach. Laboratory investigations indicated anemia (hemoglobin: 7.21 g/dL and hematocrit: 22.40 g/dl). The patient received intravenous proton pump inhibitors and a packed red blood cell transfusion. Genetic analysis revealed that the patient was a carrier of CYP2C9∗3 and CYP2C8∗3 variant alleles, indicating that the patient is a poor metabolizer for both enzymes. The patient's symptoms improved over the subsequent days, and she was discharged with instructions to avoid NSAIDs. This is the first reported Saudi patient homozygous for CYP2C9∗3 and CYP2C8∗3 variant alleles, which led to ibuprofen-induced upper GI toxicity. This case demonstrates the importance of contemplating CYP2C9 and CYP2C8 genetic variations when administrating NSAIDs like ibuprofen. Careful assessment of the risks and benefits of NSAID therapy in each patient and consideration of alternative pain management strategies must be conducted when appropriate.
Collapse
Affiliation(s)
- Amina M. Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Elsadig AE, M. Muddath AR, Elamin EM, MA Shrif NE, Waggiallah HA. Effect of CYP2C9*2 and VKORC-1639G/A Polymorphisms on Warfarin Doses Requirements in Sudanese Patients. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1366.1373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Königs C, Friedrichs M, Dietrich T. The heterogeneous pharmacological medical biochemical network PharMeBINet. Sci Data 2022; 9:393. [PMID: 35821017 PMCID: PMC9276653 DOI: 10.1038/s41597-022-01510-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Heterogeneous biomedical pharmacological databases are important for multiple fields in bioinformatics. Hetionet is a freely available database combining diverse entities and relationships from 29 public resources. Therefore, it is used as the basis for this project. 19 additional pharmacological medical and biological databases such as CTD, DrugBank, and ClinVar are parsed and integrated into Neo4j. Afterwards, the information is merged into the Hetionet structure. Different mapping methods are used such as external identification systems or name mapping. The resulting open-source Neo4j database PharMeBINet has 2,869,407 different nodes with 66 labels and 15,883,653 relationships with 208 edge types. It is a heterogeneous database containing interconnected information on ADRs, diseases, drugs, genes, gene variations, proteins, and more. Relationships between these entities represent drug-drug interactions or drug-causes-ADR relations, to name a few. It has much potential for developing further data analyses including machine learning applications. A web application for accessing the database is free to use for everyone and available at https://pharmebi.net. Additionally, the database is deposited on Zenodo at 10.5281/zenodo.6578218. Measurement(s) | data integration objective | Technology Type(s) | database creation objective |
Collapse
Affiliation(s)
- Cassandra Königs
- Bielefeld University, Bioinformatics/Medical Informatics Department, Bielefeld, 33615, Germany.
| | - Marcel Friedrichs
- Bielefeld University, Bioinformatics/Medical Informatics Department, Bielefeld, 33615, Germany
| | - Theresa Dietrich
- Bielefeld University, Bioinformatics/Medical Informatics Department, Bielefeld, 33615, Germany
| |
Collapse
|
5
|
A Turn Off Fluorescence Probe Based on Carbon Dots for Highly Sensitive Detection of BRCA1 Gene in Real Samples and Cellular Imaging. J Fluoresc 2022; 32:1733-1741. [DOI: 10.1007/s10895-022-02954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|
6
|
Sridharan K, Sivaramakrishnan G. A network meta-analysis of CYP2C9, CYP2C9 with VKORC1 and CYP2C9 with VKORC1 and CYP4F2 genotype-based warfarin dosing strategies compared to traditional. J Clin Pharm Ther 2021; 46:640-648. [PMID: 33346393 DOI: 10.1111/jcpt.13334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVES Variations in genotypes were observed in randomized clinical trials (RCTs) that evaluated genotype-based warfarin dosing. We carried out a network meta-analysis to assess whether any clinically significant differences exist between RCTs evaluating CYP2C9 with VKORC1, with CYP2C9 alone and CYP2C9, VKORC1, with CYP4F2 dosing strategies. METHODS Electronic records were searched for RCTs comparing genotype-based warfarin with traditional-dosing strategies. Key outcomes included were the time to first therapeutic international normalized ratio (INR); time to stable INR or warfarin dose; percent time in therapeutic range (TTR); and the proportion of patients with supra-therapeutic INR. Weighted mean differences (WMD) and odds ratios (OR) with 95% confidence intervals (95% CI) were the effect estimates. RESULTS AND DISCUSSION Twenty-six studies (7898 patients) were included. CYP2C9-based warfarin dosing was associated with a shorter time to first therapeutic INR (WMD: -2.73, 95% CI: -3.41, -2.05) and stable INR/warfarin dose (WMD: -8.1, 95% CI: -12.54, -3.66). CYP2C9 and VKORC1 were observed with a shorter time to first therapeutic INR (WMD: -1.92, 95% CI: -3.23, -0.61) and stable INR/warfarin dose (WMD: -4.6, 95% CI: -6.87, -2.34) along with a longer TTR (%) (WMD: 3.91, 95% CI: 1.18, 6.63). CYP2C9, VKORC1 and CYP4F2 were observed with a reduced proportion of patients with supra-therapeutic INR (OR: 0.68, 95% CI: 0.49, 0.93). Trial sequential analysis confirms the superior benefits of CYP2C9 with VKORC1 genotype. WHAT IS NEW AND CONCLUSION The present evidence is supportive of personalizing warfarin dose based only on CYP2C9 and VKORC1 genotypes compared to traditional strategies. More RCTs are needed to delineate any benefit for adding CYP4F2 to provide sufficient power for pooled analysis. No convincing evidence exists supporting the role of CYP2C9 alone.
Collapse
Affiliation(s)
- Kannan Sridharan
- Department of Pharmacology & Therapeutics, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | | |
Collapse
|
7
|
CYP4F2 and VKORC1 Polymorphisms Amplify the Risk of Carotid Plaque Formation. Genes (Basel) 2020; 11:genes11070822. [PMID: 32698322 PMCID: PMC7396977 DOI: 10.3390/genes11070822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction: Atherosclerosis represents the process by which fibrous plaques are formed in the arterial wall, increasing its rigidity with a subsequent decrease in blood flow which can lead to several cardiovascular events. Seeing as vitamin K antagonists are involved in the pathogenesis of atherosclerosis, we decided to investigate whether polymorphisms in genes that influence vitamin K metabolism might have an impact in modulating the risk of plaque formation. Patients and Methods: In the current study we included adult patients admitted in the Clinical Municipal Hospital of Cluj-Napoca without any carotid or femoral plaques clinically visible at the initial investigation, and a five year follow-up was subsequently performed. We recorded the following patient characteristics: age at inclusion, gender, area of living, smoking, presence of carotid and/or femoral plaques at five years, ischemic heart disease, arterial hypertension, atrial fibrillation, heart failure, diabetes mellitus, obesity, dyslipidemia, drug (oral anticoagulants, antihypertensives, hypolipidemic, anti-diabetic) use and status for the following gene polymorphisms: VKORC1 1639 G>A, CYP4F2 1347 G>T and GGCX 12970 C>G. Results: We observed that the major predictor of both carotid and femoral plaque formation is represented by ischemic cardiac disease. VKORC1 and CYP4F2 polymorphisms did not predict plaque formation, except for VKORC1 homozygous mutants. Nonetheless, both VKORC1 and CYP4F2 interacted with ischemic cardiac disease, increasing the risk of developing a carotid plaque, while only CYP4F2, but not VKORC1, interacted with ischemic cardiac disease to increase the risk of femoral plaque formation. Conclusions: We documented that CYP4F2 and VKORC1 polymorphisms boost the proinflammatory plaque environment (observed indirectly through the presence of ischemic heart disease), increasing the risk of plaque development.
Collapse
|
8
|
Zhang Z, Wang Y, Tan W, Wang S, Liu J, Liu X, Wang X, Gao X. A Review of Danshen Combined with Clopidogrel in the Treatment of Coronary Heart Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:2721413. [PMID: 30911318 PMCID: PMC6399523 DOI: 10.1155/2019/2721413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/28/2019] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Danshen, the root of Salvia miltiorrhiza Bunge, is a traditional herbal medicine in China, which has been used to treat irregular menstruation, cold hernia, and abdominal pain for thousands of years. Danshen is frequently used in combination with drugs to treat cardiovascular diseases. Clopidogrel is a commonly used drug for treating coronary heart disease, but clopidogrel resistance restricts its development. Therefore, the clinical efficacy of Danshen combined with clopidogrel treats coronary heart disease and the relationship between Danshen and clopidogrel metabolism enzymes is suggested for future investigations. MATERIALS AND METHODS The information was collected by searching online databases, and the RevMan 5.3 software was used to perform meta-analysis. RESULTS Twenty-two articles, including 2587 patients, were enrolled after the evaluation. Meta-analysis showed that Danshen combined with clopidogrel was more effective than clopidogrel alone in treating coronary heart disease by improving clinical curative effect, reducing the frequency of angina pectoris, improving electrocardiogram results, shortening the duration of angina pectoris, and easing adverse reactions. Danshen inhibited carboxylesterase 1 and most enzyme of cytochrome P450, especially cytochrome P450 1A2, which may affect the metabolism of clopidogrel. CONCLUSION Danshen combined with clopidogrel may compensate for individual differences of clopidogrel resistance among individuals in the treatment of coronary heart disease. Meanwhile, the inhibitory effect of Danshen on cytochrome P450 and carboxylesterase 1 could be partly responsible for the synergistic and attenuating effects of Danshen combined with clopidogrel.
Collapse
Affiliation(s)
- Zhaojian Zhang
- Key Laboratory of Formula of Traditional Chinese Medicine (Tianjin University of Traditional Chinese Medicine), Ministry of Education, China
| | - Yu Wang
- Key Laboratory of Formula of Traditional Chinese Medicine (Tianjin University of Traditional Chinese Medicine), Ministry of Education, China
| | - Wangxiao Tan
- Key Laboratory of Formula of Traditional Chinese Medicine (Tianjin University of Traditional Chinese Medicine), Ministry of Education, China
| | - Siwei Wang
- Key Laboratory of Formula of Traditional Chinese Medicine (Tianjin University of Traditional Chinese Medicine), Ministry of Education, China
| | - Jinghua Liu
- Key Laboratory of Formula of Traditional Chinese Medicine (Tianjin University of Traditional Chinese Medicine), Ministry of Education, China
| | - Xiao Liu
- Key Laboratory of Formula of Traditional Chinese Medicine (Tianjin University of Traditional Chinese Medicine), Ministry of Education, China
| | - Xiaoying Wang
- Key Laboratory of Formula of Traditional Chinese Medicine (Tianjin University of Traditional Chinese Medicine), Ministry of Education, China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiumei Gao
- Key Laboratory of Formula of Traditional Chinese Medicine (Tianjin University of Traditional Chinese Medicine), Ministry of Education, China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|