1
|
Zborowski VA, Martins CC, Marques LS, Heck SO, Nogueira CW. A chloro substituted organoselenium mitigates stress-associated memory impairment and hippocampal glutamatergic function in a repeated Forced Swim Stress Model. Neuroscience 2024; 563:110-116. [PMID: 39521324 DOI: 10.1016/j.neuroscience.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Stress is triggered by a threatening event that alters the regulation of emotion, behavior, and cognition. The effects of stress on memory in animal models are well-documented. Firstly, this study aimed to determine whether the repeated forced swim stress (FSS) protocol induces memory impairment comparable to single prolonged stress (SPS) in the Y-maze test. The second objective was to evaluate whether (p-ClPhSe)2 pretreatment mitigates stress-associated memory impairment and hippocampal glutamatergic neurotransmission in FSS-exposed mice. Mice subjected to FSS and SPS protocols reduced time spent in the novel arm of the Y-maze test compared to the control group, with no observed changes in locomotor or exploratory behavior. (p-ClPhSe)2 was administered to mice at a dose of 5 mg/kg, 30 min before the first forced swimming session on days 1 and 2. Mice underwent a Y-maze test, after which they were euthanized, and hippocampal samples were collected. (p-ClPhSe)2 pretreatment protected against the reduction in time spent in the novel arm by mice subjected to FSS. Repeated FSS exposure increased hippocampal protein levels of NMDAR subunits 2A, 2B, and EAAT1 compared to controls. (p-ClPhSe)2 pretreatment prevented this increase. In conclusion, (p-ClPhSe)2 mitigated stress-induced memory impairment in FSS-exposed mice, normalizing hippocampal NMDAR 2A, 2B, and EAAT1 protein levels.
Collapse
Affiliation(s)
- Vanessa A Zborowski
- Laboratory of Synthesis Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS Zip Code:97105-900, Brazil.
| | - Carolina C Martins
- Laboratory of Synthesis Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS Zip Code:97105-900, Brazil
| | - Luiza S Marques
- Laboratory of Synthesis Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS Zip Code:97105-900, Brazil
| | - Suélen O Heck
- Laboratory of Synthesis Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS Zip Code:97105-900, Brazil
| | - Cristina W Nogueira
- Laboratory of Synthesis Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS Zip Code:97105-900, Brazil
| |
Collapse
|
2
|
Ell MA, Schiele MA, Iovino N, Domschke K. Epigenetics of Fear, Anxiety and Stress - Focus on Histone Modifications. Curr Neuropharmacol 2024; 22:843-865. [PMID: 36946487 PMCID: PMC10845084 DOI: 10.2174/1570159x21666230322154158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 03/23/2023] Open
Abstract
Fear-, anxiety- and stress-related disorders are among the most frequent mental disorders. Given substantial rates of insufficient treatment response and often a chronic course, a better understanding of the pathomechanisms of fear-, anxiety- and stress-related disorders is urgently warranted. Epigenetic mechanisms such as histone modifications - positioned at the interface between the biological and the environmental level in the complex pathogenesis of mental disorders - might be highly informative in this context. The current state of knowledge on histone modifications, chromatin-related pharmacology and animal models modified for genes involved in the histone-related epigenetic machinery will be reviewed with respect to fear-, anxiety- and stress-related states. Relevant studies, published until 30th June 2022, were identified using a multi-step systematic literature search of the Pub- Med and Web of Science databases. Animal studies point towards histone modifications (e.g., H3K4me3, H3K9me1/2/3, H3K27me2/3, H3K9ac, H3K14ac and H4K5ac) to be dynamically and mostly brain region-, task- and time-dependently altered on a genome-wide level or gene-specifically (e.g., Bdnf) in models of fear conditioning, retrieval and extinction, acute and (sub-)chronic stress. Singular and underpowered studies on histone modifications in human fear-, anxiety- or stress-related phenotypes are currently restricted to the phenotype of PTSD. Provided consistent validation in human phenotypes, epigenetic biomarkers might ultimately inform indicated preventive interventions as well as personalized treatment approaches, and could inspire future innovative pharmacological treatment options targeting the epigenetic machinery improving treatment response in fear-, anxiety- and stressrelated disorders.
Collapse
Affiliation(s)
- Marco A. Ell
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Miriam A. Schiele
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nicola Iovino
- Department of Chromation Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Mohammadi-Farani A, Farhangian S, Shirooie S. Sex differences in acetylcholinesterase modulation during spatial and fear memory extinction in the amygdala; an animal study in the single prolonged stress model of PTSD. Res Pharm Sci 2022; 17:686-696. [PMID: 36704427 PMCID: PMC9872177 DOI: 10.4103/1735-5362.359435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/07/2022] [Accepted: 06/15/2022] [Indexed: 01/28/2023] Open
Abstract
Background and purpose Men and women show different reactions to trauma and that is believed to be the reason behind the higher prevalence of post-traumatic stress disorder (PTSD) in women. Cholinergic signaling has long been known to be involved in the processing of fear-related information and the amygdala is a critical center for fear modulation. The main goal of the current research was to find (a) whether trauma results in different learning/extinction of fear or spatial-related information among male and female rats and (b) if trauma is associated with different acetylcholinesterase (AchE) activity in the amygdala. Experimental approach We used single prolonged stress (SPS) as a PTSD model in this study. Normal and SPS animals of both sexes were tested in contextual and spatial tasks (learning and extinction). AchE activity in the amygdala was also measured during each process. Findings / Results Results indicated that fear and spatial learning were impaired in SPS animals. SPS animals also had deficits in fear and spatial memory extinction and the effect was significantly higher in female- SPS than in the male-SPS group. In the enzymatic tests, AchE activity was increased during the fear extinction test and incremental changes were more significant in the female-SPS group. Conclusion and implications Collectively, these findings provided evidence that sex differences in response to trauma were at least partly related to less fear extinction potential in female subjects. It also indicated that the extinction deficit was associated with reduced cholinergic activity in the amygdala of female animals.
Collapse
Affiliation(s)
- Ahmad Mohammadi-Farani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, I.R. Iran,Department of Physiology and Pharmacology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, I.R. Iran,Corresponding author: A. Mohammadi-Farani Tel: +98-9132267611, Fax: +98-8334265783 ;
| | - Sajad Farhangian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| |
Collapse
|
4
|
Bonomi RE, Girgenti M, Krystal JH, Cosgrove KP. A Role for Histone Deacetylases in the Biology and Treatment of Post-Traumatic Stress Disorder: What Do We Know and Where Do We Go from Here? Complex Psychiatry 2022; 8:13-27. [PMID: 36545044 PMCID: PMC9669946 DOI: 10.1159/000524079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Post-traumatic stress disorder is a prevalent disorder within the USA and worldwide with a yearly diagnosis rate of 2-4% and affecting women more than men. One of the primary methods for study of this stress disorder relies on animal models as there are few noninvasive methods and few replicated peripheral biomarkers for use in humans. One area of active research in psychiatric neuroscience is the field of epigenetics - how the chemical modifications of the genetic code regulate behavior. The dynamic changes in histone acetylation and deacetylation in the brain are not fully reflected by the study of peripheral biomarker. In this review, we aim to examine the role of histone acetylation and deacetylation in memory formation and fear memory learning. The studies discussed here focus largely on the role of histone deacetylases (HDACs) in animal models of trauma and fear response. Many studies used HDAC inhibitors to elucidate the effects after inhibition of these enzymes after trauma or stress. These studies of memory processing and cued fear extinction in animal can often shed light on human disorders of cued fear responses and memory dysregulation after stress or trauma such as in PTSD. These results provide strong evidence for a role of these enzymes in PTSD in humans. The few clinical studies that exist with HDAC inhibitors also suggest a fundamental role of these enzymes in the neurobiology of the stress response. Further study of these enzymes in both clinical and pre-clinical settings may help elucidate the neurobiology of stress-related pathology like PTSD and provide a foundation for novel therapy to treat these disorders.
Collapse
Affiliation(s)
- Robin E. Bonomi
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
- *Robin E. Bonomi,
| | - Matthew Girgenti
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
- National Center for PTSD, US Department of Veterans Affairs, West Haven, Connecticut, USA
| | - John H. Krystal
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
- National Center for PTSD, US Department of Veterans Affairs, West Haven, Connecticut, USA
| | - Kelly P. Cosgrove
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
- **Kelly P. Cosgrove,
| |
Collapse
|
5
|
Mohammadi-Farani A, Fakhri S, Jalili C, Samimi Z. Intra-mPFC injection of sodium butyrate promotes BDNF expression and ameliorates extinction recall impairment in an experimental paradigm of post-traumatic stress disorder. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1150-1158. [PMID: 36246060 PMCID: PMC9526891 DOI: 10.22038/ijbms.2022.65000.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/06/2022] [Indexed: 11/08/2022]
Abstract
Objectives Therapeutic strategies that facilitate extinction are promising in the treatment of post-traumatic stress disorder (PTSD). Brain-derived neurotrophic factor (BDNF) has a crucial role in neural plasticity, a process needed for the retention of fear extinction. In this study, we investigated the effects of local administration of a histone deacetylase (HDAC) inhibitor, sodium butyrate (NaBu), on BDNF transcription and behavioral markers of extinction in the single prolonged stress (SPS) model of PTSD. Materials and Methods NaBu was infused into the infralimbic (IL) subregion of the medial prefrontal cortex (mPFC) of male rats. The freezing response was recorded as the criterion to assess fear strength on the day of extinction as well as 24 hr later in the retention test. Other behavioral tests were also measured to evaluate the anxiety level, locomotor activity, and working memory on the retention day. HDAC activity and BDNF mRNA expression were evaluated after the behavioral experiments. Results NaBu facilitated the recall of fear extinction in SPS rats (P<0.0001). SPS rats had higher HDAC activity (P<0.0001) and lower BDNF expression (P<0.05) than non-SPS animals. Also, anxiety was higher in the SPS group (P<0.0001), but locomotor activity (P=0.61) and working memory (P=0.36) were not different between SPS and Non-SPS groups. Conclusion Our findings provide evidence that the mechanism of action of NaBu in the improvement of extinction recall is mediated, in part, by enhancing histone acetylation and reviving BDNF expression in IL.
Collapse
Affiliation(s)
- Ahmad Mohammadi-Farani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran, Department of Physiology and Pharmacology, School of medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran,Corresponding author: Ahmad Mohammadi-Farani. Department of Physiology and Pharmacology, School of medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran. Tel: +98-38-33333057;
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Samimi
- Department of Immunology, School of medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Sur B, Lee B. Ginsenoside Rg3 modulates spatial memory and fear memory extinction by the HPA axis and BDNF-TrkB pathway in a rat post-traumatic stress disorder. J Nat Med 2022; 76:821-831. [PMID: 35982366 DOI: 10.1007/s11418-022-01636-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/13/2022] [Indexed: 12/01/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a serious mental disorder that can develop after exposure to extreme stress. Korean red ginseng, whose major active component is ginsenoside Rg3 (Rg3), is a widely used traditional antioxidant that has anti-inflammatory, anti-apoptotic and anxiolytics effects. This study investigated whether the administration of Rg3 ameliorated the memory deficit induced by a single prolonged stress (SPS) in rats. Male rats were dosed with Rg3 (25 or 50 mg/kg) once daily for 14 days after exposure to SPS. Rg3 administration improved fear memory and spatial memory might be involved in modulating the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and monoamine imbalance in the medial prefrontal cortex and hippocampus. It also increased the reduction in the brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) mRNAs expression, and the ratio of p-Akt/Akt in the hippocampus. Thus, Rg3 exerted memory-improving actions might be involved in regulating HPA axis and activating BDNF-TrkB pathway. Our findings suggest that Rg3 could be useful for preventing traumatic stress, such as PTSD.
Collapse
Affiliation(s)
- Bongjun Sur
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
- Center for Converging Humanities, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
7
|
Mohammadi-Farani A, Limoee M, Shirooie S. Sodium butyrate enhances fear extinction and rescues hippocampal acetylcholinesterase activity in a rat model of posttraumatic stress disorder. Behav Pharmacol 2021; 32:413-421. [PMID: 33883448 DOI: 10.1097/fbp.0000000000000633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
It is believed that impaired extinction of fear memories is an underlying cause for the development of posttraumatic stress disorder (PTSD). Histone deacetylases (HDAC) are enzymes that modulate extinction by changing the chromatin structure and altering protein synthesis in the brain. Studies show that stress modifies both HDAC activity and cerebral cholinergic neurotransmission. The present work aims to evaluate the effect of sodium butyrate (NaBu), an HDAC inhibitor, on behavioral markers of extinction and biochemical changes in HDAC and acetylcholinesterase activity in the hippocampus. NaBu was administered for 7 days in a group of rats that were exposed to single prolonged stress (SPS), as a model for PTSD. Contextual fear conditioning was performed on the 8th day, and fear extinction was measured in the next 4 consecutive days. Other behavioral tests to measure anxiety, locomotor activity and working memory were performed for further interpretation of the results. Hippocampal acetylcholinesterase and HDAC activity were also measured through biochemical tests. Behavioral results showed that treatment with NaBu can reverse the SPS-induced extinction deficits. Biochemical data indicated that while SPS induced overactivity in hippocampal HDAC, it decreased acetylcholinesterase activity in the region. Both effects were reversed after NaBu treatment. It seems that at least part of extinction deficiency in SPS exposed rats is related to hypoacetylation of acetylcholinesterase in the hippocampus. Preemptive therapy with an HDAC inhibitor reverses this process and is worth further evaluation as a possible therapeutic approach in PTSD.
Collapse
Affiliation(s)
- Ahmad Mohammadi-Farani
- Pharmaceutical Sciences Research Centre, Health Institute
- Department of Pharmacology and Toxicology, School of Pharmacy
| | - Mazdak Limoee
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | |
Collapse
|