1
|
Raeisi Estabragh MA, Behnam B, Torkzadeh-Mahani M, Pardakhty A. Niosome as a Drug Delivery Carrier for Sorafenib: Preparation, Investigation of Physicochemical Properties, and In Vitro Effects on HepG2 Cell Line. Adv Pharm Bull 2024; 14:836-845. [PMID: 40190669 PMCID: PMC11970492 DOI: 10.34172/apb.43228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 04/09/2025] Open
Abstract
Purpose Sorafenib is known as one of the oral anti-cancer drugs used in liver cancer. However, its lipophilic nature can lead to side effects, variable pharmacokinetics, and poor absorption. The use of novel drug delivery systems, such as niosomes, may help address these issues and improve the effectiveness of sorafenib. Methods Different niosomal formulations of sorafenib were prepared. The morphology, size analysis, and physical stability were investigated. The encapsulation efficiency percent of the selected formulations was measured using the dialysis method, and the release of sorafenib was checked for four hours using the Franz diffusion cell. The cytotoxicity and in vitro effect on the HepG2 cell line was investigated using the MTT assay and flow cytometry. Results The mean volume diameter of Span 60/Tween 60/cholesterol (45/45/10 mole%) niosomal formulation was 6 µm with minimal size changes and good stability over six months of storage. The encapsulation efficiency percent of this formulation was 66.40±1.11, and 61.43±1.42 percent of the drug was released within 4 hours. In vitro release followed Higuchi kinetics. Cytotoxicity tests showed an IC50 of 7.5 µg/mL for the niosomal formulation, compared to 15.96 µg/mL for the sorafenib solution. Conclusion Niosomes containing Span 60/ Tween 60/ cholesterol (45/45/10 mole%) are promising for loading and sustained release of sorafenib. The use of niosome as a carrier can enhance the effectiveness of sorafenib on the HepG2 cell line. This niosomal formulation of sorafenib shows potential for future studies.
Collapse
Affiliation(s)
- Mohammad Amin Raeisi Estabragh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Behzad Behnam
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Badran MM, Alsubaie A, Salem Bekhit MM, Alomrani AH, Almomen A, Ibrahim MA, Alshora DH. Bioadhesive hybrid system of niosomes and pH sensitive in situ gel for itraconazole ocular delivery: Dual approach for efficient treatment of fungal infections. Saudi Pharm J 2024; 32:102208. [PMID: 39697473 PMCID: PMC11653644 DOI: 10.1016/j.jsps.2024.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Itraconazole (ITZ) is a highly effective antifungal agent. However, its oral application is associated with systemic toxicity and poor topical use. The present study aims to improve the antifungal activity of ITZ by loading it into bioadhesive niosomes. This approach is considered to enhance the ocular permeation of ITZ, thereby boosting its efficacy against fungal infections. Therefore, it was encapsulated into niosomes (F1) and subsequently coated with hyaluronic acid (HA; F2), chitosan (CS; F3), or a bilayer of CS/HA (F4). In addition, they were further incorporated into pH-sensitive in situ gels. This dual approach is expected to increase the amount of corneal-permeated ITZ, facilitating more effective management of ocular fungal infection. Firstly, the niosomes were prepared by hydrating proniosomes using span 60, cholesterol, and phospholipid. ITZ-niosomes showed an increase in vesicle size from 165.5 ± 3.4 (F1) to 378.2 ± 7.2 nm (F3). The zeta potential varied within -20.9 ± 2.1 (F1), -29.5 ± 3.1 (F2), 32.3 ± 1.9 (F3), and 22.6 ± 1.3 mV (F4). The high EE% values ranged from 78.1 ± 2.2 % to 86.6 ± 2.9 %. Regarding ITZ release, F1 demonstrated a high release profile, whereas bioadhesive niosomes showed sustained release patterns. Furthermore, in situ gels containing niosomes displayed excellent gelling capacity and viscosity. Remarkably, F3 laden-in situ gels (F3-ISG) demonstrated the highest ex vivo corneal permeability of ITZ and antifungal activity with a safety effect. These results indicate that F3-ISG presents a promising strategy for boosting the ocular delivery of ITZ, that could help in treating ocular fungal infections.
Collapse
Affiliation(s)
- Mohamed M. Badran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Areej Alsubaie
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mounir M. Salem Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah H. Alomrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aliyah Almomen
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Mohamed Abbas Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Doaa Hasan Alshora
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Alhowyan A, Imran M, Haque A, Kalam MA. Surface-engineered Niosomes of Esculin Hydrate for the management of depression via intranasal route: Optimization, In vitro, Ex vivo and pharmacokinetic assessment. J Drug Deliv Sci Technol 2024; 102:106417. [DOI: 10.1016/j.jddst.2024.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
|
4
|
Chimplee S, Mitsuwan W, Zulkifli M, Eawsakul K, Ongtanasup T, Sangkanu S, Mahboob T, Oliveira SM, Wiart C, Ramamoorthy S, Pereira MDL, Saravanabhavan SS, Wilairatana P, Nissapatorn V. Comparative efficacy of Knema retusa extract delivery via PEG- b-PCL, niosome, and their combination against Acanthamoeba triangularis genotype T4: characterization, inhibition, anti-adhesion, and cytotoxic activity. PeerJ 2024; 12:e18452. [PMID: 39559326 PMCID: PMC11572385 DOI: 10.7717/peerj.18452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Background Acanthamoeba spp. is a waterborne, opportunistic protozoan that can cause amebic keratitis and granulomatous amebic encephalitis. Knema retusa is a native tree in Malaysia, and its extracts possess a broad range of biological activities. Niosomes are non-ionic surfactant-based vesicle formations and suggest a future targeted drug delivery system. Copolymer micelle (poly(ethylene glycol)-block-poly(ɛ-caprolactone); PEG-b-PCL) is also a key constituent of niosome and supports high stability and drug efficacy. To establish Knema retusa extract (KRe) loading in diverse nanocarriers via niosome, PEG-b-PCL micelle, and their combination and to study the effect of all types of nanoparticles (NPs) on Acanthamoeba viability, adherent ability, elimination of adherence, and cytotoxicity. Methods In this study, we characterized niosomes, PEG-b-PCL, and their combination loaded with KRe and tested the effect of these NPs on Acanthamoeba triangularis stages. KRe-loaded PEG-b-PCL, KRe-loaded niosome, and KRe-loaded PEG-b-PCL plus niosome were synthesized and characterized regarding particle size and charge, yield, encapsulation efficiency (EE), and drug loading content (DLC). The effect of these KRe-loaded NPs on trophozoite and cystic forms of A. triangularis was assessed through assays of minimal inhibitory concentration (MIC), using trypan blue exclusion to determine the viability. The effect of KRe-loaded NPs was also determined on A. triangularis trophozoite for 24-72 h. Additionally, the anti-adhesion activity of the KRe-loaded niosome on trophozoites was also performed on a 96-well plate. Cytotoxicity activity of KRe-loaded NPs was assessed on VERO and HaCaT cells using MTT assay. Results KRe-loaded niosome demonstrated a higher yielded (87.93 ± 6.03%) at 286 nm UV-Vis detection and exhibited a larger size (199.3 ± 29.98 nm) and DLC (19.63 ± 1.84%) compared to KRe-loaded PEG-b-PCL (45.2 ± 10.07 nm and 2.15 ± 0.25%). The EE (%) of KRe-loaded niosome was 63.67 ± 4.04, which was significantly lower than that of the combination of PEG-b-PCL and niosome (79.67 ± 2.08). However, the particle charge of these NPs was similar (-28.2 ± 3.68 mV and -28.5 ± 4.88, respectively). Additionally, KRe-loaded niosome and KRe-loaded PEG-b-PCL plus niosome exhibited a lower MIC at 24 h (0.25 mg/mL), inhibiting 90-100% of Acanthamoeba trophozoites which lasted 72 h. KRe-loaded niosome affected adherence by around 40-60% at 0.125-0.25 mg/mL and removed Acanthamoeba adhesion on the surface by about 90% at 0.5 mg/mL. Cell viability of VERO and HaCaT cells treated with 0.125 mg/mL of KRe-loaded niosome and KRe-loaded PEG-b-PCL plus niosome exceeded 80%. Conclusion Indeed, niosome and niosome plus PEG-b-PCL were suitable nanocarrier-loaded KRe, and they had a greater nanoparticle property to test with high activities against A. triangularis on the reduction of adherence ability and demonstration of its low toxicity to VERO and HaCaT cells.
Collapse
Affiliation(s)
- Siriphorn Chimplee
- School of Languages and General Education, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- One Health Research Center, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Center of Excellence in Innovation of Essential Oil, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Masyitah Zulkifli
- School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Komgrit Eawsakul
- School of Medicine, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Tassanee Ongtanasup
- School of Medicine, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team), World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Tooba Mahboob
- Department of Pharmaceutical Biology, UCSI University, Kuala Lumpur, Malaysia
| | - Sonia M.R. Oliveira
- Faculty of Dental Medicine, Catholic University, Viseu, Portugal
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Christophe Wiart
- The Institute for Tropical Biology and Conservation, University Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Siva Ramamoorthy
- School of Bio Sciences & Technology, Vellore Institute of Technology (VIT), Velllore, India
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Shanmuga Sundar Saravanabhavan
- Department of Biotechnology, Aarupadai Veedu Institute of Technology, Vinayaka Missions Research Foundation (DU), Chennai Campus, Paiyanoor, Chennai, India
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team), World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| |
Collapse
|
5
|
Alali U, Al-Tu’ma MMK, Jawad AF, Ahmed ST, Ali HA, Abdulzehra S, Al-Tu’ma FJ. Synthesis, Characterization, and In-Vitro Evaluation of Silibinin-loaded PEGylated Niosomal Nanoparticles: Potential Anti-Cancer Effects on SW480 Colon Cancer Cells. Asian Pac J Cancer Prev 2024; 25:2539-2550. [PMID: 39068589 PMCID: PMC11480629 DOI: 10.31557/apjcp.2024.25.7.2539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVE Colorectal cancer is a significant global health concern with high mortality rates. Silibinin is a compound derived from milk thistle with anticancer properties and may be a potential treatment option for colorectal cancer. Its poor solubility limits its clinical application, but various strategies, such as nanoparticle encapsulation, have shown promise. In this study, a PEGylated niosomal drug delivery system was used to enhance the solubility of silibinin, and its anti-proliferative effects were evaluated against human colorectal cancer cell lines. METHODS The silibinin-loaded PEGylated niosomal nanoparticles (NIO-SIL) were fabricated using the thin-film hydration method and characterized with dialysis bag, AFM, SEM, DLS, and FTIR systems. Finally, the cancerous cells and human normal cells were treated with NIO-SIL and pure silibinin. The proliferation, apoptosis, and cell cycle of these cells were evaluated. Subsequently, the expression of Bax, Bcl-2, p53, and cyclin D1 genes was measured using real-time PCR. RESULT The drug release profile, size, morphology, and chemical interactions of the synthesized PEGylated niosomal nanoparticles were suitable for use as a drug delivery system. Both pure silibinin and NIO-SIL could reduce the proliferation of cancerous cells, induce apoptosis, and cause cell cycle arrest, with no significant negative effects reported on human normal cells. Both pure silibinin and NIO-SIL reduced the expression of the Bcl-2 and cyclin D1 genes while increasing the expression of Bax and p53. (p-value < 0.05 *). CONCLUSION The outcomes of this study indicate the high potential of PEGylated niosomal nanoparticles for encapsulation and delivery of silibinin to cancer cells, with no negative effects on normal cells.
Collapse
Affiliation(s)
- Urjwan Alali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Kerbala, Kerbala, Iraq.
| | - Maha Mohammed Kadhim Al-Tu’ma
- Department of Anesthesia Techniques, College of Health and Medical Techniques, Al-Zahraa University for Women, Kerbala, Iraq.
| | - Ammar Fadhil Jawad
- Department of Pharmacognesy, College of Pharmacy, University of Kerbala, Kerbala, Iraq.
| | - Saja Talib Ahmed
- Department of Chemistry, College of Science, University of Kufa, Kufa, Iraq.
| | - Hanaa Addai Ali
- Department of Chemistry, College of Science, University of Kufa, Kufa, Iraq.
| | - Siham Abdulzehra
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fadhil Jawad Al-Tu’ma
- Department of Chemistry and Biochemistry, College of Medicine, University of Kerbala, Kerbala, Iraq.
| |
Collapse
|
6
|
Fadaei MS, Fadaei MR, Kheirieh AE, Rahmanian-Devin P, Dabbaghi MM, Nazari Tavallaei K, Shafaghi A, Hatami H, Baradaran Rahimi V, Nokhodchi A, Askari VR. Niosome as a promising tool for increasing the effectiveness of anti-inflammatory compounds. EXCLI JOURNAL 2024; 23:212-263. [PMID: 38487088 PMCID: PMC10938253 DOI: 10.17179/excli2023-6868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/16/2024] [Indexed: 03/17/2024]
Abstract
Niosomes are drug delivery systems with widespread applications in pharmaceutical research and the cosmetic industry. Niosomes are vesicles of one or more bilayers made of non-ionic surfactants, cholesterol, and charge inducers. Because of their bilayer characteristics, similar to liposomes, niosomes can be loaded with lipophilic and hydrophilic cargos. Therefore, they are more stable and cheaper in preparation than liposomes. They can be classified into four categories according to their sizes and structures, namely small unilamellar vesicles (SUVs), large unilamellar vesicles (LUVs,), multilamellar vesicles (MLVs), and multivesicular vesicles (MVVs). There are many methods for niosome preparation, such as thin-film hydration, solvent injection, and heating method. The current study focuses on the preparation methods and pharmacological effects of niosomes loaded with natural and chemical anti-inflammatory compounds in kinds of literature during the past decade. We found that most research was carried out to load anti-inflammatory agents like non-steroidal anti-inflammatory drugs (NSAIDs) into niosome vesicles. The studies revealed that niosomes could improve anti-inflammatory agents' physicochemical properties, including solubility, cellular uptake, stability, encapsulation, drug release and liberation, efficiency, and oral bioavailability or topical absorption. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Mohammad Saleh Fadaei
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Emad Kheirieh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Abouzar Shafaghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hooman Hatami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, FL 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Tulbah AS, Elkomy MH, Zaki RM, Eid HM, Eissa EM, Ali AA, Yassin HA, Aldosari BN, Naguib IA, Hassan AH. Novel nasal niosomes loaded with lacosamide and coated with chitosan: A possible pathway to target the brain to control partial-onset seizures. Int J Pharm X 2023; 6:100206. [PMID: 37637477 PMCID: PMC10458293 DOI: 10.1016/j.ijpx.2023.100206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
This work aimed to develop and produce lacosamide-loaded niosomes coated with chitosan (LCA-CTS-NSM) using a thin-film hydration method and the Box-Behnken design. The effect of three independent factors (Span 60 amount, chitosan concentration, and cholesterol amount) on vesicle size, entrapment efficiency, zeta potential, and cumulative release (8 h) was studied. The optimal formulation of LCA-CTS-NSM was chosen from the design space and assessed for morphology, in vitro release, nasal diffusion, stability, tolerability, and in vivo biodistribution for brain targeting after intranasal delivery. The vesicle size, entrapment, surface charge, and in vitro release of the optimal formula were found to be 194.3 nm, 58.3%, +35.6 mV, and 81.3%, respectively. Besides, it exhibits sustained release behavior, enhanced nasal diffusion, and improved physical stability. Histopathological testing revealed no evidence of toxicity or structural damage to the nasal mucosa. It demonstrated significantly more brain distribution than the drug solution. Overall, the data is encouraging since it points to the potential for non-invasive intranasal administration of LCA as an alternative to oral or parenteral routes.
Collapse
Affiliation(s)
- Alaa S. Tulbah
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hussein M. Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Essam M. Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Adel A. Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Heba A. Yassin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University (Arish campus), Arish, Egypt
| | - Basmah Nasser Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amira H. Hassan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
8
|
Mod Razif MRF, Chan SY, Widodo RT, Chew YL, Hassan M, Hisham SA, Rahman SA, Ming LC, Tan CS, Lee SK, Liew KB. Optimization of a Luteolin-Loaded TPGS/Poloxamer 407 Nanomicelle: The Effects of Copolymers, Hydration Temperature and Duration, and Freezing Temperature on Encapsulation Efficiency, Particle Size, and Solubility. Cancers (Basel) 2023; 15:3741. [PMID: 37509402 PMCID: PMC10378229 DOI: 10.3390/cancers15143741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Luteolin is a flavonoid compound that has been widely studied for its various anti-cancer properties and sensitization to multidrug-resistant cells. However, the limited solubility and bioavailability of Lut hindered its potential clinical use. Theoretically, the combination of this compound with vitamin E TPGS and poloxamer 407 can produce a synergistic effect to enhance tumor apoptosis and P-glycoprotein inhibition. This study aimed to develop and optimize vitamin E TPGS/Poloxamer 407 micelles loaded with luteolin through investigating certain factors that can affect the encapsulation efficiency and particle size of the micelle. METHODS A micelle was prepared using the film hydration method, and the micellar solution was lyophilized. The cake formed was analyzed. The factors investigated include the concentrations of the surfactants, ratio of vitamin E TPGS/Poloxamer 407, temperature of the hydrating solution, duration of hydration, and freezing temperature before lyophilization. The effects of these factors on the encapsulation efficiency and particle size of the micelle were also studied. The encapsulation efficiency was measured using a UV-Vis spectrophotometer, while particle size was measured using dynamic light scattering. RESULTS The optimized micelle was found to have 90% encapsulation efficiency with a particle size of less than 40 nm, which was achieved using a 10% concentration of surfactants at a vitamin E TPGS/Poloxamer 407 ratio of 3:1. The optimized temperature for hydrating the micellar film was 40 °C, the optimized mixing time was 1 h, and the optimized freezing temperature was -80 °C. The solubility of the luteolin-loaded micelles increased 459-fold compared to pure Lut in water. The critical micelle concentration of the vitamin E TPGS/Poloxamer 407 micelle was 0.001 mg/mL, and the release study showed that luteolin-loaded micelles exhibited sustained release behavior. The release of luteolin from a micelle was found to be higher in pH 6.8 compared to pH 7.4, which signified that luteolin could be accumulated more in a tumor microenvironment compared to blood. CONCLUSION This study demonstrated that several factors need to be considered when developing such nanoparticles in order to obtain a well-optimized micelle.
Collapse
Affiliation(s)
| | - Siok Yee Chan
- School of Pharmaceutical Science, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | | | - Yik-Ling Chew
- Faculty of Pharmaceutical Science, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Masriana Hassan
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | | | | | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, Nilai 71800, Malaysia
| | - Siew-Keah Lee
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya 63000, Malaysia
| |
Collapse
|
9
|
Masilamani SD, Chokkalingam P, Hari R. Characterization, Cytotoxicity and Anti-oxidant Studies of Phytoniosome Loaded with Ethanolic Leaf Extract of Tinospora Cordifolia. Avicenna J Med Biotechnol 2023; 15:196-202. [PMID: 37538243 PMCID: PMC10395454 DOI: 10.18502/ajmb.v15i3.12930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/06/2023] [Indexed: 08/05/2023] Open
Abstract
Background From time immemorial herbal preparations are been employed for the treatment of several ailments. In recent years due to poor bioavailability the conventional herbal preparations are replaced by phytoniosomes, an advanced novel drug delivery system in which the herbal extracts are incorporated into a non-ionic surfactant to yield higher absorption and remarkable desired pharmacological activity. The present study is aimed to prepare and characterize the ethanolic leaf extract of Tinospora cordifolia (nELETC) loaded phytoniosome and to compare its antioxidant properties with ethanolic leaf extract of Tinospora cordifolia (ELETC). Methods The ethanolic leaf extract and ethanolic leaf extract of Tinospora cordifolia loaded phytoniosome (ELETC and nELETC) were prepared. The characterization of the prepared phytoniosomes were performed by UV-Visible spectroscopy, FTIR, XRD, SEM, TEM, DLS and zeta potential. The nontoxic nature of the prepared phytoniosomes was analyzed using MTT assay in vero cell line. The antioxidant potential of ELETC and nELETC were compared by the scavenging activity of DPPH, Hydrogen peroxide and Superoxide radicals. Results The formation of ethanolic leaf extract of Tinospora cordifolia loaded phytoniosome (nELETC) was confirmed with UV-Vis spectroscopy. The SEM and TEM images confirmed the spherical shape of the nELETC with average size ranging from 600 to 1800 nm. The zeta potential showed magnitude of -65.55 to -77.83 mV and its crystalline structure was confirmed by XRD analysis. Through the FTIR spectrum presence of alcohols, alkanes, phenols, esters, aliphatic and aromatic compounds as well as alkenes and carbolic acids were identified. MTT assay establishes the non-toxic nature of the synthesized nELETC and excellent antioxidant potential was observed for nELETC than ELETC. Conclusion In conclusion, the ethanolic leaf extract of Tinospora cordifolia loaded phytoniosome (nELETC) will serve as a promising drug carrier in scavenging the free radicals and can be used in various biological applications.
Collapse
Affiliation(s)
- Sri Devi Masilamani
- Department of Biotechnology, Dr. M.G.R. Educational & Research Institute, Maduravoyal, Chennai, India
| | - Priya Chokkalingam
- Department of Biotechnology, Dr. M.G.R. Educational & Research Institute, Maduravoyal, Chennai, India
| | - Rajeswary Hari
- Department of Biotechnology, Dr. M.G.R. Educational & Research Institute, Maduravoyal, Chennai, India
| |
Collapse
|
10
|
Abd-Elghany AA, Mohamad EA. Chitosan-Coated Niosomes Loaded with Ellagic Acid Present Antiaging Activity in a Skin Cell Line. ACS OMEGA 2023; 8:16620-16629. [PMID: 37214686 PMCID: PMC10193557 DOI: 10.1021/acsomega.2c07254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The polyphenol compound ellagic acid (EA) extracted from pomegranate has potential bioactivity against different types of chronic diseases. Skin aging is a long-term physiological process caused by many environmental factors, the most important of which is exposure to sun ultraviolet (UV) radiation. UV-induced chronic photodamage of the skin results in extrinsic aging. This study aimed to evaluate the photoprotective effects of EA on the human fibroblast skin cell line HFB4 and investigate its capacity to protect collagen from UV-induced deterioration. EA was encapsulated into chitosan-coated niosomes to reduce the skin aging effect of UV radiation in vitro. The tested formulations (niosomes loaded with EA and chitosan-coated niosomes loaded with EA) were characterized using transmission electron microscopy, dynamic light scattering, and scanning electron microscopy. Furthermore, the in vitro release of EA was determined. The HFB4 cell line samples were split into five groups: control, UV, UV-EA, UV-NIO-EA, and UV-CS-NIO-EA. UV irradiation was applied to the cell line groups via a UV-emitting lamp for 1 h, and then cell viability was measured for each group. The expression of genes implicated in skin aging (Co1A1, TERT, Timp3, and MMP3) was also assessed to quantify the impact of the loaded EA. The findings showed that EA-loaded chitosan-coated niosomes improved cell survival, upregulated Col1A1, TERT, and Timp3 genes, and downregulated MMP3. Thus, nanoparticles encapsulating EA are potent antioxidants that can preserve collagen levels and slow down the aging process in human skin.
Collapse
Affiliation(s)
- Amr A. Abd-Elghany
- Radiology
and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj 11942, KSA
- Biophysics
Department, Faculty of Science, Cairo University, Cairo University St., Giza 12613, Egypt
| | - Ebtesam A. Mohamad
- Biophysics
Department, Faculty of Science, Cairo University, Cairo University St., Giza 12613, Egypt
| |
Collapse
|
11
|
Zaid Alkilani A, Abo-Zour H, Basheer HA, Abu-Zour H, Donnelly RF. Development and Evaluation of an Innovative Approach Using Niosomes Based Polymeric Microneedles to Deliver Dual Antioxidant Drugs. Polymers (Basel) 2023; 15:polym15081962. [PMID: 37112106 PMCID: PMC10145612 DOI: 10.3390/polym15081962] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Ascorbic acid (AA) and caffeine (CAFF) work to protect cells from ultraviolet (UV) radiation and slow down the photoaging process of the skin. However, cosmetic application of AA and CAFF is limited due to poor penetration across the skin and rapid oxidation of AA. The aim of this study was to design and evaluate the dermal delivery of dual antioxidants utilizing microneedles (MNs) loaded with AA and CAFF niosomes. The niosomal nanovesicles were prepared using the thin film method and had particle sizes ranging from 130.6-411.2 nm and a negative Zeta potential of around -35 mV. The niosomal formulation was then combined with polyvinylpyrrolidone (PVP) and polyethylene glycol 400 (PEG 400) to create an aqueous polymer solution. The best skin deposition of AA and CAFF was achieved with the formulation containing 5% PEG 400 (M3) and PVP. Furthermore, the role of AA and CAFF as antioxidants in preventing cancer formation has been well-established. Here we validated the antioxidant properties of ascorbic acid (AA) and caffeine (CAFF) in a novel niosomal formulation referred to as M3 by testing its ability to prevent H2O2-indued cell damage and apoptosis in MCF-7 breast cancer cells. Results showed that M3 was able to shield MCF-7 cells from H2O2 induced damage at concentrations below 2.1 µg/mL for AA and 1.05 µg/mL for CAFF, and also exhibited anticancer effects at higher concentrations of 210 µg/mL for AA and 105 µg/mL. The formulations were stable for two months at room temperature in terms of moisture and drug content. The use of MNs and niosomal carriers could be a promising approach for dermal delivery of hydrophilic drugs like AA and CAFF.
Collapse
Affiliation(s)
- Ahlam Zaid Alkilani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Hadeel Abo-Zour
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Haneen A Basheer
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Hana Abu-Zour
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Ryan F Donnelly
- Medical Biology Centre, School of Pharmacy, Queen's University Belfast, Belfast BT7 1NN, UK
| |
Collapse
|
12
|
Pourseif T, Ghafelehbashi R, Abdihaji M, Radan N, Kaffash E, Heydari M, Naseroleslami M, Mousavi-Niri N, Akbarzadeh I, Ren Q. Chitosan -based nanoniosome for potential wound healing applications: Synergy of controlled drug release and antibacterial activity. Int J Biol Macromol 2023; 230:123185. [PMID: 36623618 DOI: 10.1016/j.ijbiomac.2023.123185] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
This study aims to develop a niosomal platform which can delivery drugs such as tetracycline hydrochloride (TCH) to treat bacterial infections in wounds. To this end, chitosan (CS) was used to obtain a controlled drug release and at the same time antibacterial activity. By design of experiments the niosome encapsulated TCH (TCH-Nio) were optimized for their particle size and encapsulation efficiency, followed by analysis of the release profile of TCH and stability of TCH-Nio and TCH-Nio@CS. The antibacterial activity and cytotoxicity of the fabricated nanoparticles were investigated as well. The release rate of TCH from TCH-Nio@CS in all conditions is less than TCH-Nio. In addition, higher temperature increases the release rate of drug from these formulations. The size, polydispersity index, and encapsulation efficacy of TCH-Nio and TCH-Nio@CS were more stable in 4 °C compared to 25 °C. TCH, TCH-Nio, and TCH-Nio@CS had MIC values of 7.82, 3.91, and 1.95 μg/mL for Escherichia coli, 3.91, 1.95, and 0.98 μg/mL for Pseudomonas aeruginosa, and 1.96, 0.98, and 0.49 μg/mL for Staphylococcus aureus, respectively. Coating of chitosan on niosome encapsulated TCH (TCH-Nio@CS) led to a reduced burst release of TCH from niosome (TCH-Nio), and enabled 2-fold higher antibacterial and anti-biofilm activity against the tested bacterial pathogens E. coli, P. aeruginosa and S. aureus, compared to the uncoated TCH-Nio, and 4-folder higher than the TCH solution, suggesting the synergetic effect of niosome encapsulation and chitosan coating. Moreover, the formulated niosomes displayed no in vitro toxicity toward the human foreskin fibroblast cells (HFF). Both TCH-Nio and TCH-Nio@CS were found to down-regulate the expression of certain biofilm genes, i.e., csgA, ndvB, and icaA in the tested bacteria, which might partially explain the improved antibacterial activity compared to TCH. The obtained results demonstrated that TCH-Nio@CS is capable of controlled drug release, leading to high antibacterial efficacy. The established platform of TCH-Nio@CS enlighten a clinic potential toward the treatment of bacterial infections in skin wounds, dental implants and urinary catheter.
Collapse
Affiliation(s)
- Tara Pourseif
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohammadreza Abdihaji
- Department of Biology, Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Niloufar Radan
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Ehsan Kaffash
- Department of Pharmaceutics, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Heydari
- Department of Cell and Molecular Biology, Faculty of Biological Science, University of Kharazmi, Tehran, Iran
| | - Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland.
| |
Collapse
|
13
|
Preparation and Characterization of Patch Loaded with Clarithromycin Nanovesicles for Transdermal Drug Delivery. J Funct Biomater 2023; 14:jfb14020057. [PMID: 36826856 PMCID: PMC9964574 DOI: 10.3390/jfb14020057] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
Clarithromycin (CLR), categorized as a Biopharmaceutical Classification System class II drug, has several gastrointestinal tract side effects and an extremely unpalatable bitter taste. The current study aimed to design transdermal patch-embedded CLR niosomes to overcome the aforementioned CLR-related challenges. Various niosomal formulations were successfully fabricated and characterized for their morphology, size, in vitro release, and antimicrobial efficacy. Subsequently, the CLR niosomes were loaded into transdermal patches using the solvent casting method. The polydispersity index of the niosomes ranged from 0.005 to 0.360, indicating the uniformity of the niosomes. The encapsulating efficiency (EE)% varied from 12 to 86%. The optimal Chol: surfactant ratio for drug release was found to be 0.5:1. In addition, the encapsulation of CLR into niosomal nanovesicles did not reduce the antibacterial activity of the CLR. The niosomal patch had a significantly higher permeability coefficient of CLR than the conventional patch. In addition to that, a shear-thinning behavior was observed in the niosomal gels before loading them into a niosomal patch. The flux (Jss) of the niosomal patch was significantly higher than the conventional patch by more than 200 times. In conclusion, niosome-based transdermal patches could be a promising method for the transdermal drug delivery of class II drugs and drugs experiencing GIT side effects.
Collapse
|
14
|
Haddadian A, Robattorki FF, Dibah H, Soheili A, Ghanbarzadeh E, Sartipnia N, Hajrasouliha S, Pasban K, Andalibi R, Ch MH, Azari A, Chitgarzadeh A, Kashtali AB, Mastali F, Noorbazargan H, Mirzaie A. Niosomes-loaded selenium nanoparticles as a new approach for enhanced antibacterial, anti-biofilm, and anticancer activities. Sci Rep 2022; 12:21938. [PMID: 36536030 PMCID: PMC9763330 DOI: 10.1038/s41598-022-26400-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Targeted drug delivery and increasing the biological activity of drugs is one of the recent challenges of pharmaceutical researchers. Niosomes are one of the new targeted drug delivery systems that enhances the biological properties of drugs. In this study, for the first time, the green synthesis of selenium nanoparticles (SeNPs), and its loading into niosome was carried out to increase the anti-bacterial and anti-cancer activity of SeNPs. Different formulations of noisome-loaded SeNPs were prepared, and the physical and chemical characteristics of the prepared niosomes were investigated. The antibacterial and anti-biofilm effects of synthesized niosomes loaded SeNPs and free SeNPs against standard pathogenic bacterial strains were studied, and also its anticancer activity was investigated against breast cancer cell lines. The expression level of apoptotic genes in breast cancer cell lines treated with niosome-loaded SeNPs and free SeNPs was measured. Also, to evaluate the biocompatibility of the synthesized niosomes, their cytotoxicity effects against the human foreskin fibroblasts normal cell line (HFF) were studied using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The results illustrated that the optimal formulation had an average size of 177.9 nm, a spherical shape, and an encapsulation efficiency of 37.58%. Also, the results revealed that the release rate of SeNPs from niosome-loaded SeNPs and free SeNPs was 61.26% and 100%, respectively, in 72 h. Also, our findings demonstrated that the niosome-loaded SeNPs have significant antibacterial, anti-biofilm, and anticancer effects compared to the free SeNPs. In addition, niosome-loaded SeNPs can upregulate the expression level of Bax, cas3, and cas9 apoptosis genes while the expression of the Bcl2 gene is down-regulated in all studied cell lines, significantly. Also, the results of the MTT test indicated that the free niosome has no significant cytotoxic effects against the HFF cell line which represents the biocompatibility of the synthesized niosomes. In general, based on the results of this study, it can be concluded that niosomes-loaded SeNPs have significant anti-microbial, anti-biofilm, and anti-cancer effects, which can be used as a suitable drug delivery system.
Collapse
Affiliation(s)
- Abbas Haddadian
- grid.411463.50000 0001 0706 2472Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farnoush Falahi Robattorki
- grid.412266.50000 0001 1781 3962Biomedical Engineering Group, Chemical Engineering Department, Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Hedieh Dibah
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Ali Soheili
- grid.412112.50000 0001 2012 5829Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Erfan Ghanbarzadeh
- grid.411874.f0000 0004 0571 1549Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nasrin Sartipnia
- grid.411463.50000 0001 0706 2472Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Shadi Hajrasouliha
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Kamal Pasban
- grid.449262.fDepartment of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Romina Andalibi
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Mojtaba Hedayati Ch
- grid.411874.f0000 0004 0571 1549Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arezou Azari
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Arman Chitgarzadeh
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Aliasghar Bagheri Kashtali
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Fatemeh Mastali
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Hassan Noorbazargan
- grid.411600.2Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mirzaie
- grid.460834.d0000 0004 0417 6855Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| |
Collapse
|
15
|
Miatmoko A, Faradisa AA, Jauhari AA, Hariawan BS, Cahyani DM, Plumeriastuti H, Sari R, Hendradi E. The effectiveness of ursolic acid niosomes with chitosan coating for prevention of liver damage in mice induced by n-nitrosodiethylamine. Sci Rep 2022; 12:21397. [PMID: 36496469 PMCID: PMC9741648 DOI: 10.1038/s41598-022-26085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/09/2022] [Indexed: 12/13/2022] Open
Abstract
Ursolic acid (UA) is a pentacyclic triterpene carboxylic acid which produces various effects, including anti-cancer, hepatoprotective, antioxidant and anti-inflammatory. However, UA demonstrates poor water solubility and permeability. Niosomes have been reported to improve the bioavailability of low water-soluble drugs. This study aimed to investigate the protective action of UA-niosomes with chitosan layers against liver damage induced by N-Nitrosodiethylamine (NDEA). UA niosomes were prepared using a thin layer hydration method, with chitosan being added by vortexing the mixtures. For the induction of liver damage, the mice were administered NDEA intraperitoneally (25 mg/kgBW). They were given niosomes orally (11 mg UA/kgBW) seven and three days prior to NDEA induction and subsequently once a week with NDEA induction for four weeks. The results showed that chitosan layers increased the particle sizes, PDI, and ζ-potentials of UA niosomes. UA niosomes with chitosan coating reduced the SGOT and SGPT level. The histopathological evaluation of liver tissue showed an improvement with reduced bile duct inflammation and decreasing pleomorphism and enlargement of hepatocyte cell nuclei in UA niosomes with the chitosan coating treated group. It can be concluded that UA niosomes with chitosan coating improved the efficacy of preventive UA therapy in liver-damaged mice induced with NDEA.
Collapse
Affiliation(s)
- Andang Miatmoko
- grid.440745.60000 0001 0152 762XDepartment of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115 Indonesia ,grid.440745.60000 0001 0152 762XStem Cell Research and Development Center, Universitas Airlangga, Surabaya, 60115 Indonesia
| | - Amelia Anneke Faradisa
- grid.440745.60000 0001 0152 762XDepartment of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115 Indonesia
| | - Achmad Aziz Jauhari
- grid.440745.60000 0001 0152 762XDepartment of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115 Indonesia
| | - Berlian Sarasitha Hariawan
- grid.440745.60000 0001 0152 762XMaster Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115 Indonesia
| | - Devy Maulidya Cahyani
- grid.440745.60000 0001 0152 762XMaster Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115 Indonesia
| | - Hani Plumeriastuti
- grid.440745.60000 0001 0152 762XDepartment of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115 Indonesia
| | - Retno Sari
- grid.440745.60000 0001 0152 762XDepartment of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115 Indonesia
| | - Esti Hendradi
- grid.440745.60000 0001 0152 762XDepartment of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115 Indonesia
| |
Collapse
|
16
|
Miatmoko A, Marufah NA, Nada Q, Rosita N, Erawati T, Susanto J, Purwantari KE, Nurkanto A, P, Soeratri W. The effect of surfactant type on characteristics, skin penetration and anti-aging effectiveness of transfersomes containing amniotic mesenchymal stem cells metabolite products in UV-aging induced mice. Drug Deliv 2022; 29:3443-3453. [PMID: 36471900 PMCID: PMC9731583 DOI: 10.1080/10717544.2022.2149895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transfersome has been developed to enhance dermal delivery of amniotic mesenchymal stem cell metabolite products (AMSC-MP). AMSC-MP contains many growth factors for managing skin aging, thus improving the quality of an adjusted life year. This study aims to determine the effect of surfactant types acting as the edge activator on transfersome-loading AMSC-MP. Transfersome was prepared by thin-layer hydration method and composed of l-α-phosphatidylcholine as a phospholipid and three types of surfactants, namely; cationic (stearylamine), anionic (sodium cholate), and nonionic surfactant (Tween 80) at a weight ratio of 85:15, respectively. Transfersomes were evaluated for physical characteristics, penetration, effectiveness, and safety. The results showed that sodium cholate, an anionic surfactant, produced the smallest transfersome particle size, i.e., 144.2 ± 3.2 nm, among all formulas. Trans-SA containing stearylamine had a positive charge of 41.53 ± 6.03 mV compared to Trans-SC and Trans-TW, whose respective charges were -56.9 ± 0.55 mV and -41.73 ± 0.86 mV. The small particle size and low negative value of zeta potential enabled high dermal penetration by transfersomes containing AMSC-MP, while the positive charge of stearylamine hindered its penetration of deeper skin layers. Trans-SC and Trans-TW produced higher collagen density values at 77.11 ± of 4.15% and 70.05 ± of 6.95%, than that of Trans-SA. All the AMSC-MP transfersomes were relatively safe with 0.5-1.0 macrophage cell numbers invaded the dermis per field of view. In conclusion, sodium cholate, an anionic surfactant, demonstrated considerable capacity as the edge activator of transfersome-loading AMSC-MP for skin anti-aging therapy.
Collapse
Affiliation(s)
- Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, Indonesia,Stem Cell Research and Development Center, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, Indonesia,CONTACT Andang Miatmoko Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, Indonesia
| | - Nurul Ailda Marufah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, Indonesia
| | - Qothrin Nada
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, Indonesia
| | - Noorma Rosita
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, Indonesia
| | - Tristiana Erawati
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, Indonesia
| | - Joni Susanto
- Department of Anatomy and Histology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Kusuma Eko Purwantari
- Department of Anatomy and Histology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Arif Nurkanto
- Research Center for Biology, National Research and Innovation Agency, Kompleks CSC-BG LIPI, Bogor, Indonesia
| | - Purwati
- Stem Cell Research and Development Center, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, Indonesia
| | - Widji Soeratri
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, Indonesia
| |
Collapse
|