1
|
Gureev AP, Silachev DN, Sadovnikova IS, Krutskikh EP, Chernyshova EV, Volodina DE, Samoylova NA, Potanina DV, Burakova IY, Smirnova YD, Popov VN, Plotnikov EY. The Ketogenic Diet but not Hydroxycitric Acid Keeps Brain Mitochondria Quality Control and mtDNA Integrity Under Focal Stroke. Mol Neurobiol 2023:10.1007/s12035-023-03325-8. [PMID: 37074549 DOI: 10.1007/s12035-023-03325-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/20/2023] [Indexed: 04/20/2023]
Abstract
Mitochondrial dysfunction in the ischemic brain is one of the hallmarks of stroke. Dietary interventions such as the ketogenic diet and hydroxycitric acid supplementation (a caloric restriction mimetic) may potentially protect neurons from mitochondrial damage induced by focal stroke in mice. We showed that in control mice, the ketogenic diet and the hydroxycitric acid did not impact significantly on the mtDNA integrity and expression of genes involved in the maintenance of mitochondrial quality control in the brain, liver, and kidney. The ketogenic diet changed the bacterial composition of the gut microbiome, which via the gut-brain axis may affect the increase in anxiety behavior and reduce mice mobility. The hydroxycitric acid causes mortality and suppresses mitochondrial biogenesis in the liver. Focal stroke modelling caused a significant decrease in the mtDNA copy number in both ipsilateral and contralateral brain cortex and increased the levels of mtDNA damage in the ipsilateral hemisphere. These alterations were accompanied by a decrease in the expression of some of the genes involved in maintaining mitochondrial quality control. The ketogenic diet consumption before stroke protects mtDNA in the ipsilateral cortex, probably via activation of the Nrf2 signaling. The hydroxycitric acid, on the contrary, increased stroke-induced injury. Thus, the ketogenic diet is the most preferred variant of dietetic intervention for stroke protection compared with the hydroxycitric acid supplementation. Our data confirm some reports about hydroxycitric acid toxicity, not only for the liver but also for the brain under stroke condition.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036, Voronezh, Russia
| | - Denis N Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Irina S Sadovnikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Ekaterina P Krutskikh
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Ekaterina V Chernyshova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Daria E Volodina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Natalia A Samoylova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Daria V Potanina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036, Voronezh, Russia
| | - Inna Yu Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036, Voronezh, Russia
| | - Yuliya D Smirnova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036, Voronezh, Russia
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036, Voronezh, Russia
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234, Moscow, Russia.
| |
Collapse
|
2
|
Guo ZN, Liu J, Chang J, Zhang P, Jin H, Sun X, Yang Y. GAS6/Axl Signaling Modulates Blood-Brain Barrier Function Following Intravenous Thrombolysis in Acute Ischemic Stroke. Front Immunol 2021; 12:742359. [PMID: 34733281 PMCID: PMC8558492 DOI: 10.3389/fimmu.2021.742359] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/30/2021] [Indexed: 01/27/2023] Open
Abstract
Background and Purpose Recent studies have shown that several proteins, including Axl, are related to hemorrhagic transformation (HT) following intravenous thrombolysis by affecting blood-brain barrier (BBB) function. However, the effects of these proteins on BBB function have been studied primarily in animal models. In this study, we aimed to identify serum protein markers that predict HT following intravenous thrombolysis in patients with acute ischemic stroke (AIS) and verify whether these serum proteins regulate BBB function and HT in animal stroke models. Methods First, 118 AIS patients were enrolled in this study, including 52 HT patients and 66 non-HT patients. In Step 1, baseline serum levels of Axl, angiopoietin-like 4, C-reactive protein, ferritin, hypoxia-inducible factor-1 alpha, HTRA2, Lipocalin2, matrix metallopeptidase 9, platelet-derived growth factor-BB, and tumor necrosis factor alpha were measured using a quantitative cytokine chip. Next, sequence mutations and variations in genes encoding the differentially expressed proteins identified in Step 1 and subsequent function-related proteins were detected. Finally, we verified whether manipulation of differentially expressed proteins affected BBB function and HT in a hyperglycemia-induced rat stroke model. Results Serum Axl levels were significantly lower in the HT group than in the non-HT group; none of the other protein markers differed significantly between the two groups. Genetic testing revealed that sequence variations of GAS6 (the gene encoding the Axl ligand)-derived long non-coding RNA, GAS6-AS1, were significantly correlated with an increased risk of HT after intravenous thrombolysis. In animal studies, administration of recombinant GAS6 significantly reduced brain infarction and neurological deficits and attenuated BBB disruption and HT. Conclusions Lower serum Axl levels, which may result from sequence variations in GAS6-AS1, are correlated with an increased risk of HT after intravenous thrombolysis in stroke patients. Activation of the Axl signaling pathway by the GAS6 protein may serve as a therapeutic strategy to reduce HT in AIS patients.
Collapse
Affiliation(s)
- Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jie Liu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Junlei Chang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Peng Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xin Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Chen D, Hou S, Chen Y. Effects of alteplase on neurological deficits and expression of GFAP and GAP-43 in brain tissue of rats with acute cerebral infarction. Am J Transl Res 2021; 13:10608-10616. [PMID: 34650733 PMCID: PMC8507047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To investigate the effects of alteplase on neurological deficits, as well as on the expressions of glial fibrillary acidic protein (GFAP) and growth-associated protein-43 (GAP-43) in brain tissues of rats with acute cerebral infarction (ACI). METHODS Sprague Dawley (SD) rats (n = 50) were enrolled in a trial to establish a ACI rat model; of these, 48 rats were succeeefully modeled and were randomized into either the model or alteplase group, whereas another 24 SD rats were included in the sham-operated group. FINDINGS No significant difference in scores was observed between the model and alteplase groups at T1 (P > 0.05); however, rats in the alteplase group demonstrated lower scores than those in the model group at T2, T3, and T4 (P < 0.05). Rats in the model group showed a larger cerebral infarction volume than those in the alteplase group (P < 0.05), and the infarction volume on day 1, 3, 6, and 9 was higher in rats in the alteplase group than those in the sham-operated group (P < 0.05). CONCLUSION Treatment with alteplase can be effective in reducing cerebral infarction volume and moderating neurological deficits in ACI modeled rats within a 6-h time window, which may be correlated with the regulation of GFAP and GAP-43 expressions by alteplase.
Collapse
Affiliation(s)
- Dongping Chen
- Department of Neurology, The Affiliated Longyan First Hospital of Fujian Medical UniversityLongyan 364000, Fujian Province, China
| | - Shuhong Hou
- Department of Function, The Affiliated Longyan First Hospital of Fujian Medical UniversityLongyan 364000, Fujian Province, China
| | - Yangui Chen
- Department of Neurology, The Affiliated Longyan First Hospital of Fujian Medical UniversityLongyan 364000, Fujian Province, China
| |
Collapse
|
4
|
The authors reply. Crit Care Med 2021; 49:e807-e808. [PMID: 34261939 DOI: 10.1097/ccm.0000000000005129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Honore PM, Redant S, Kaefer K, Barreto Gutierrez L, Kugener L, Attou R, Gallerani A, De Bels D. Appropriate Treatment of Ischemic Stroke That Is Essential for the Reduction of Mortality and Morbidity: Should We Use Hyperbaric Oxygen Therapy Together With Recombinant Tissue Plasminogen Activator for Improving Brain Oxygenation and Before Recombinant Tissue Plasminogen Activator to Minimize the Risk of Massive Bleeding? Crit Care Med 2021; 49:e806-e807. [PMID: 34261938 DOI: 10.1097/ccm.0000000000004988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Patrick M Honore
- All authors: Department of ICU, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Cao L, Huang X, Zui FQ. Successful intravenous thrombolysis for acute ischemic stroke caused by aortic dissection with severe hypofibrinogenemia: a case report and literature review. Int J Neurosci 2021; 132:939-944. [PMID: 33393403 DOI: 10.1080/00207454.2020.1858823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Intravenous thrombolysis (IVT) for acute brain infarctions caused by aortic dissection (AD) may lead to fatal outcomes; thus, it should be ruled out, especially if hypofibrinogenemia occurs after IVT. Successful management of AD-related acute brain infarction with hypofibrinogenemia after IVT has not been reported previously. CASE REPORT An 84-year-old woman developed sudden left limb weakness and aphasia for almost 4 h. Alteplase was administered intravenously immediately after cerebral hemorrhage was ruled out by emergent head computed tomography (CT). An anomaly suspected to be AD was detected during subsequent routine chest CT, which was confirmed by CT angiography to be a thoracoabdominal aortic dissecting aneurysm (DeBakey type I). Severe hypofibrinogenemia was also noted. After effective blood pressure control, intramuscular injection of vitamin K, and rehydration therapy, her brain cell metabolism improved, hemiplegia improved slightly, and hypofibrinogenemia recovered gradually. The patient's cerebral hemorrhage did not progress, there was no chest pain or no aggravation of hemiplegia, and the fibrinogen level gradually returned to normal. The condition was stable during hospitalization. At 1.5 months after discharge, the patient showed minimal change in condition. CONCLUSION The symptoms of AD may be nonspecific and latent. IVT may be allowed to perform for some patients with AD related ischemical stroke, And IVT can improve the neural symptoms of AD-related ischemic stroke, but close monitoring is needed to avoid aneurysm rupture. Fibrinogen levels should also be monitored periodically after IVT for early detection of hypofibrinogenemia.
Collapse
Affiliation(s)
- Liming Cao
- Department of Neurology, The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xuming Huang
- Department of Gastroenterology, Shenzhen Shiyan People's Hospital, Shenzhen, China
| | - Fei-Qi Zui
- Department of Neurology, The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Dong H, Zhou W, Xin J, Shi H, Yao X, He Z, Wang Z. Salvinorin A moderates postischemic brain injury by preserving endothelial mitochondrial function via AMPK/Mfn2 activation. Exp Neurol 2019; 322:113045. [DOI: 10.1016/j.expneurol.2019.113045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/07/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
|
8
|
The Effect of Hyperbaric Oxygen Therapy on Functional Impairments Caused by Ischemic Stroke. Neurol Res Int 2018; 2018:3172679. [PMID: 30402285 PMCID: PMC6198568 DOI: 10.1155/2018/3172679] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/24/2018] [Indexed: 11/23/2022] Open
Abstract
Background While research suggests a benefit of hyperbaric oxygen therapy (HBOT) for neurologic injury, controlled clinical trials have not been able to clearly define the benefits. Objective To investigate the effects of HBOT on physical and cognitive impairments resulting from an ischemic stroke. Methods Using a within-subject design a baseline for current functional abilities was established over a 3-month period for all subjects (n=7). Each subject then received two 4-week periods of HBOT for a total of 40 90-minute treatments over a 12-week period. Subjects completed a battery of assessments and had blood drawn six times over the 9-month total duration of the study. Results We found improvements in cognition and executive function as well as physical abilities, specifically, improved gait. Participants reported improved sleep and quality of life following HBOT treatment. We also saw changes in serum levels of biomarkers for inflammation and neural recovery. In the functional domains where improvement was observed following HBOT treatment, the improvements were maintained up to 3 months following the last treatment. However, the physiological biomarkers showed a pattern of more transient changes following HBOT treatment. Conclusions Findings from this study support the idea of HBOT as a potential intervention following stroke.
Collapse
|
9
|
Liu F, Lu J, Manaenko A, Tang J, Hu Q. Mitochondria in Ischemic Stroke: New Insight and Implications. Aging Dis 2018; 9:924-937. [PMID: 30271667 PMCID: PMC6147588 DOI: 10.14336/ad.2017.1126] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/26/2017] [Indexed: 12/21/2022] Open
Abstract
Stroke is the leading cause of death and adult disability worldwide. Mitochondrial dysfunction has been regarded as one of the hallmarks of ischemia/reperfusion (I/R) induced neuronal death. Maintaining the function of mitochondria is crucial in promoting neuron survival and neurological improvement. In this article, we review current progress regarding the roles of mitochondria in the pathological process of cerebral I/R injury. In particular, we emphasize on the most critical mechanisms responsible for mitochondrial quality control, as well as the recent findings on mitochondrial transfer in acute stroke. We highlight the potential of mitochondria as therapeutic targets for stroke treatment and provide valuable insights for clinical strategies.
Collapse
Affiliation(s)
- Fan Liu
- 1Discipline of Neuroscience, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfei Lu
- 1Discipline of Neuroscience, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anatol Manaenko
- 2Departments of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Junjia Tang
- 3Department of neurosurgery, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Qin Hu
- 1Discipline of Neuroscience, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Shekhar S, Cunningham MW, Pabbidi MR, Wang S, Booz GW, Fan F. Targeting vascular inflammation in ischemic stroke: Recent developments on novel immunomodulatory approaches. Eur J Pharmacol 2018; 833:531-544. [PMID: 29935175 DOI: 10.1016/j.ejphar.2018.06.028] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/02/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
Ischemic stroke is a devastating and debilitating medical condition with limited therapeutic options. However, accumulating evidence indicates a central role of inflammation in all aspects of stroke including its initiation, the progression of injury, and recovery or wound healing. A central target of inflammation is disruption of the blood brain barrier or neurovascular unit. Here we discuss recent developments in identifying potential molecular targets and immunomodulatory approaches to preserve or protect barrier function and limit infarct damage and functional impairment. These include blocking harmful inflammatory signaling in endothelial cells, microglia/macrophages, or Th17/γδ T cells with biologics, third generation epoxyeicosatrienoic acid (EET) analogs with extended half-life, and miRNA antagomirs. Complementary beneficial pathways may be enhanced by miRNA mimetics or hyperbaric oxygenation. These immunomodulatory approaches could be used to greatly expand the therapeutic window for thrombolytic treatment with tissue plasminogen activator (t-PA). Moreover, nanoparticle technology allows for the selective targeting of endothelial cells for delivery of DNA/RNA oligonucleotides and neuroprotective drugs. In addition, although likely detrimental to the progression of ischemic stroke by inducing inflammation, oxidative stress, and neuronal cell death, 20-HETE may also reduce susceptibility of onset of ischemic stroke by maintaining autoregulation of cerebral blood flow. Although the interaction between inflammation and stroke is multifaceted, a better understanding of the mechanisms behind the pro-inflammatory state at all stages will hopefully help in developing novel immunomodulatory approaches to improve mortality and functional outcome of those inflicted with ischemic stroke.
Collapse
Affiliation(s)
- Shashank Shekhar
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA; Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Mark W Cunningham
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mallikarjuna R Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
11
|
Huang S, Tong X, Rehman MU, Wang M, Zhang L, Wang L, Li J, Yang S. Oxygen Supplementation Ameliorates Tibial Development via Stimulating Vascularization in Tibetan Chickens at High Altitudes. Int J Biol Sci 2017; 13:1547-1559. [PMID: 29230103 PMCID: PMC5723921 DOI: 10.7150/ijbs.22670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/15/2017] [Indexed: 12/20/2022] Open
Abstract
Tibetan chickens (TBCs) living in high-altitude hypoxic environment, are characterized by delayed growth and small size as compared to low-altitude broiler chickens. Increasing evidences signify the beneficial effect of oxygen (O2) supplementation in animal's body for regulating their body growth and organ development. However, it is still unclear that whether O2 supplementation has an ameliorative and protective role in TBCs living at high altitude. In this study, we first found that O2 supplementation not only increased the survival rate but also promoted the growth of TBCs associated with bone development. Importantly, we observed that the increase of vascular distribution in the tibial hypertrophic zone could contribute to promote growth and development of the tibia, which is highly correlated with the up-regulated expression level of vascular endothelial growth factor (VEGF)-A and VEGF receptor-1 (VEGFR1). Additionally, hypoxia inducible factor (HIF)-1ɑ also has a stimulative elevation by O2 supplementation. These results were confirmed by histology, immunohistochemistry, qRT-PCR and Western blotting techniques. Altogether, these findings demonstrated that the up-regulation of VEGFA and its receptors are accompanied by proangiogeneic factor (HIF-1α) expression, which were required for angiogenesis to meliorate tibia development of TBCs in hypoxia-induced bone suppression that occurred during O2 supplementation. Thus, O2 supplementation may serve as a good applicant for promoting and meliorating bone development in juvenile high-altitude animals.
Collapse
Affiliation(s)
- Shucheng Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiaole Tong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Mujeeb Ur Rehman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Meng Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000 Tibet, People's Republic of China
| | - Shijin Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
12
|
Yanishevsky SN, Tsygan NV, Golokhvastov SY, Andreev RV, Litvinenko IV, Karpova OS, Yakovleva VA. Modern strategies of protection of hypoxic-ischemic brain damage. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:78-86. [DOI: 10.17116/jnevro201711712278-86] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|