1
|
Spirito F, Nocini R, Mori G, Albanese M, Georgakopoulou EA, Sivaramakrishnan G, Khalil B, Špiljak B, Surya V, Mishra D, Chaurasia A. The Potential of Oncolytic Virotherapy in the Treatment of Head and Neck Cancer: A Comprehensive Review. Int J Mol Sci 2024; 25:12990. [PMID: 39684701 DOI: 10.3390/ijms252312990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Head and neck cancer (HNC) represents a challenging oncological entity with significant morbidity and mortality rates. Despite advances in conventional therapies, including surgery, chemotherapy, and radiation therapy, the overall survival rates for advanced HNC remain suboptimal. In recent years, the emerging field of oncolytic virotherapy has gained attention as a promising therapeutic approach for various malignancies, including HNC. This review provides a comprehensive overview of the current understanding of oncolytic viruses (Ovs) in the context of HNC treatment, including their mechanisms of action, preclinical and clinical studies, challenges, and future directions. Future oncolytic virotherapy focuses on improving delivery and specificity through nanoparticle carriers and genetic modifications to enhance tumor targeting and immune response. Combining different OVs and integrating them with immunotherapies, such as checkpoint inhibitors, could overcome tumor resistance and improve outcomes. Personalized approaches and rigorous clinical trials are key to ensuring the safety and effectiveness of virotherapy in treating HNC.
Collapse
Affiliation(s)
- Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Riccardo Nocini
- Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, University of Verona, 37134 Verona, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Massimo Albanese
- Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, University of Verona, 37134 Verona, Italy
| | - Eleni A Georgakopoulou
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Basel Khalil
- Department of Basic Sciences, Faculty of Dentistry, University of Damascus, Damascus 30621, Syria
| | - Bruno Špiljak
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Varun Surya
- Department of Oral Pathology and Microbiology, Centre for Dental Educationand Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Deepika Mishra
- Department of Oral Pathology and Microbiology, Centre for Dental Educationand Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, King George's Medical University, Lucknow 226003, India
| |
Collapse
|
2
|
Omole RK, Oluwatola O, Akere MT, Eniafe J, Agboluaje EO, Daramola OB, Ayantunji YJ, Omotade TI, Torimiro N, Ayilara MS, Adeyemi OI, Salinsile OS. Comprehensive assessment on the applications of oncolytic viruses for cancer immunotherapy. Front Pharmacol 2022; 13:1082797. [PMID: 36569326 PMCID: PMC9772532 DOI: 10.3389/fphar.2022.1082797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
The worldwide burden of cancers is increasing at a very high rate, including the aggressive and resistant forms of cancers. Certain levels of breakthrough have been achieved with the conventional treatment methods being used to treat different forms of cancers, but with some limitations. These limitations include hazardous side effects, destruction of non-tumor healthy cells that are rapidly dividing and developing, tumor resistance to anti-cancer drugs, damage to tissues and organs, and so on. However, oncolytic viruses have emerged as a worthwhile immunotherapeutic option for the treatment of different types of cancers. In this treatment approach, oncolytic viruses are being modeled to target cancer cells with optimum cytotoxicity and spare normal cells with optimal safety, without the oncolytic viruses themselves being killed by the host immune defense system. Oncolytic viral infection of the cancer cells are also being genetically manipulated (either by removal or addition of certain genes into the oncolytic virus genome) to make the tumor more visible and available for attack by the host immune cells. Hence, different variants of these viruses are being developed to optimize their antitumor effects. In this review, we examined how grave the burden of cancer is on a global level, particularly in sub-Saharan Africa, major conventional therapeutic approaches to the treatment of cancer and their individual drawbacks. We discussed the mechanisms of action employed by these oncolytic viruses and different viruses that have found their relevance in the fight against various forms of cancers. Some pre-clinical and clinical trials that involve oncolytic viruses in cancer management were reported. This review also examined the toxicity and safety concerns surrounding the adoption of oncolytic viro-immunotherapy for the treatment of cancers and the likely future directions for researchers and general audience who wants updated information.
Collapse
Affiliation(s)
- Richard Kolade Omole
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria,Microbiology Unit, Department of Applied Sciences, Osun State College of Technology, Esa-Oke, Nigeria,*Correspondence: Richard Kolade Omole,
| | - Oluwaseyi Oluwatola
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States,Department of Immunology, Moffit Cancer Center, Tampa, FL, United States
| | - Millicent Tambari Akere
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH, United States
| | - Joseph Eniafe
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | | | | | - Yemisi Juliet Ayantunji
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria,Advanced Space Technology Applications Laboratory, Cooperative Information Network, National Space Research and Development Agency, Ile-Ife, Nigeria
| | | | - Nkem Torimiro
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Modupe Stella Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Oluwole Isaac Adeyemi
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | |
Collapse
|
3
|
Hwang CC, Igase M, Sakurai M, Haraguchi T, Tani K, Itamoto K, Shimokawa T, Nakaichi M, Nemoto Y, Noguchi S, Coffey M, Okuda M, Mizuno T. Oncolytic reovirus therapy: Pilot study in dogs with spontaneously occurring tumours. Vet Comp Oncol 2017; 16:229-238. [PMID: 29076241 DOI: 10.1111/vco.12361] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 12/26/2022]
Abstract
Oncolytic virotherapy is a novel treatment involving replication-competent virus in the elimination of cancer. We have previously reported the oncolytic effects of reovirus in various canine cancer cell lines. This study aims to establish the safety profile of reovirus in dogs with spontaneously occurring tumours and to determine a recommended dosing regimen. Nineteen dogs with various tumours, mostly of advanced stages, were treated with reovirus, ranging from 1.0 × 108 to 5.0 × 109 TCID50 given as intratumour injection (IT) or intravenous infusion (IV) daily for up to 5 consecutive days in 1 or multiple treatment cycles. Adverse events (AEs) were graded according to the Veterinary Cooperative Oncology Group- Common Terminology Criteria for Adverse Events (VCOG-CTCAE) v1.1 guidelines. Viral shedding, neutralizing anti-reovirus antibody (NARA) production and immunohistochemical (IHC) detection of reovirus protein in the tumours were also assessed. AE was not observed in most dogs and events were limited to Grade I or II fever, vomiting, diarrhoea and inflammation of the injected tumour. No infectious virus was shed and all dogs had elevated NARA levels post-treatment. Although IHC results were only available in 6 dogs, 4 were detected positive for reovirus protein. In conclusion, reovirus is well-tolerated and can be given safely to tumour-bearing dogs according to the dosing regimen used in this study without significant concerns of viral shedding. Reovirus is also potentially effective in various types of canine tumours.
Collapse
Affiliation(s)
- C C Hwang
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - M Igase
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - M Sakurai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - T Haraguchi
- Laboratory of Small Animal Clinical Science (Surgical Division), Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - K Tani
- Laboratory of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - K Itamoto
- Laboratory of Small Animal Clinical Science (Surgical Division), Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - T Shimokawa
- Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - M Nakaichi
- Laboratory of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Y Nemoto
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - S Noguchi
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - M Coffey
- Oncolytics Biotech Inc, Calgary, Canada
| | - M Okuda
- Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan.,Biomedical Science Center for Translational Research, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - T Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Biomedical Science Center for Translational Research, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
4
|
Castellanos MR, Pan Q. Novel p53 therapies for head and neck cancer. World J Otorhinolaryngol Head Neck Surg 2016; 2:68-75. [PMID: 29204550 PMCID: PMC5698513 DOI: 10.1016/j.wjorl.2016.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/11/2016] [Indexed: 01/31/2023] Open
Abstract
Inactivation of the tumor suppressor p53 is the predominant pathogenetic event in head and neck squamous cell carcinoma (HNSCC). The p53 pathway in HNSCC can be compromised through multiple mechanisms including gene mutations, hyperactivation of endogenous negative p53 regulators and by the human papillomavirus E6 protein. Inactivation of p53 is associated with poor clinical response and outcome; therefore, restoration of the p53 signaling cascade may be an effective approach to ablate HNSCC cells. Viral approaches to restore p53 activity in HNSCC have been well-studied and shown modest activity in clinical trials. Recent work has focused on high-throughput screens and rational designs to identify and develop small molecules to rescue p53 function. Several p53-targeting small molecules have demonstrated very promising activity in pre-clinical studies but have yet progressed to the clinical setting. Further development of p53 therapies, in particular chemical approaches, should be prioritized and evaluated in the HNSCC setting.
Collapse
Affiliation(s)
- Mario R Castellanos
- Division of Research, Department of Medicine, Staten Island University Hospital, Northwell Health, Staten Island, NY 10305, United States
| | - Quintin Pan
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States.,Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, United States
| |
Collapse
|
5
|
Polymeric oncolytic adenovirus for cancer gene therapy. J Control Release 2015; 219:181-191. [PMID: 26453806 DOI: 10.1016/j.jconrel.2015.10.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/28/2015] [Accepted: 10/02/2015] [Indexed: 01/01/2023]
Abstract
Oncolytic adenovirus (Ad) vectors present a promising modality to treat cancer. Many clinical trials have been done with either naked oncolytic Ad or combination with chemotherapies. However, the systemic injection of oncolytic Ad in clinical applications is restricted due to significant liver toxicity and immunogenicity. To overcome these issues, Ad has been engineered physically or chemically with numerous polymers for shielding the Ad surface, accomplishing extended blood circulation time and reduced immunogenicity as well as hepatotoxicity. In this review, we describe and classify the characteristics of polymer modified oncolytic Ad following each strategy for cancer treatment. Furthermore, this review concludes with the highlights of various polymer-coated Ads and their prospects, and directions for future research.
Collapse
|