1
|
Ko SH, Cho KA, Li X, Ran Q, Liu Z, Chen L. GPX modulation promotes regenerative axonal fusion and functional recovery after injury through PSR-1 condensation. Nat Commun 2025; 16:1079. [PMID: 39870634 PMCID: PMC11772683 DOI: 10.1038/s41467-025-56382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025] Open
Abstract
Axonal fusion represents an efficient way to recover function after nerve injury. However, how axonal fusion is induced and regulated remains largely unknown. We discover that ferroptosis signaling can promote axonal fusion and functional recovery in C. elegans in a dose-sensitive manner. Ferroptosis-induced lipid peroxidation enhances injury-triggered phosphatidylserine exposure (PS) to promote axonal fusion through PS receptor (PSR-1) and EFF-1 fusogen. Axon injury induces PSR-1 condensate formation and disruption of PSR-1 condensation inhibits axonal fusion. Extending these findings to mammalian nerve repair, we show that loss of Glutathione peroxidase 4 (GPX4), a crucial suppressor of ferroptosis, promotes functional recovery after sciatic nerve injury. Applying ferroptosis inducers to mouse sciatic nerves retains nerve innervation and significantly enhances functional restoration after nerve transection and resuture without affecting axon regeneration. Our study reveals an evolutionarily conserved function of lipid peroxidation in promoting axonal fusion, providing insights for developing therapeutic strategies for nerve injury.
Collapse
Affiliation(s)
- Su-Hyuk Ko
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Kyung-Ah Cho
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Xin Li
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Qitao Ran
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
2
|
Shen T, Zhang W, Lan R, Wang Z, Qin J, Chen J, Wang J, Wu Z, Shen Y, Lin Q, Xu Y, Chen Y, Wei Y, Liu Y, Ning Y, Deng H, Cao Z, Ren X. Developing preclinical dog models for reconstructive severed spinal cord continuity via spinal cord fusion technique. IBRO Neurosci Rep 2024; 16:560-566. [PMID: 38764541 PMCID: PMC11099315 DOI: 10.1016/j.ibneur.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024] Open
Abstract
Background Spinal cord injury (SCI) is a severe impairment of the central nervous system, leading to motor, sensory, and autonomic dysfunction. The present study investigates the efficacy of the polyethylene glycol (PEG)-mediated spinal cord fusion (SCF) techniques, demonstrating efficacious in various animal models with complete spinal cord transection at the T10 level. This research focuses on a comparative analysis of three SCF treatment models in beagles: spinal cord transection (SCT), vascular pedicle hemisected spinal cord transplantation (vSCT), and vascularized allograft spinal cord transplantation (vASCT) surgical model. Methods Seven female beagles were included in the SCT surgical model, while four female dogs were enrolled in the vSCT surgical model. Additionally, twelve female dogs underwent vASCT in a paired donor-recipient setup. Three surgical model were evaluated and compared through electrophysiology, imaging and behavioral recovery. Results The results showed a progressive recovery in the SCT, vSCT and vASCT surgical models, with no statistically significant differences observed in cBBB scores at both 2-month and 6-month post-operation (both P>0.05). Neuroimaging analysis across the SCT, vSCT and vASCT surgical models revealed spinal cord graft survival and fiber regrowth across transection sites at 6 months postoperatively. Also, positive MEP waveforms were recorded in all three surgical models at 6-month post-surgery. Conclusion The study underscores the clinical relevance of PEG-mediated SCF techniques in promoting nerve fusion, repair, and motor functional recovery in SCI. SCT, vSCT, and vASCT, tailored to specific clinical characteristics, demonstrated similar effective therapeutic outcomes.
Collapse
Affiliation(s)
- Tingting Shen
- Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, China
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH 43221, United States
| | - Weihua Zhang
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH 43221, United States
| | - Rongyu Lan
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH 43221, United States
| | - Zhihui Wang
- Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, China
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH 43221, United States
| | - Jie Qin
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH 43221, United States
| | - Jiayang Chen
- Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, China
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH 43221, United States
| | - Jiaxing Wang
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH 43221, United States
- Department of Medicine School, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhuotan Wu
- Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, China
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH 43221, United States
| | - Yangyang Shen
- Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, China
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH 43221, United States
| | - Qikai Lin
- Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, China
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH 43221, United States
| | - Yudong Xu
- Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, China
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH 43221, United States
| | - Yuan Chen
- Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, China
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH 43221, United States
| | - Yi Wei
- Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, China
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH 43221, United States
| | - Yiwen Liu
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH 43221, United States
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Yuance Ning
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH 43221, United States
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Haixuan Deng
- Department of Imaging, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
| | - Zhenbin Cao
- Department of Imaging, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
| | - Xiaoping Ren
- Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, China
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH 43221, United States
- Department of Medicine School, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
3
|
Shen T, Zhang W, Wang X, Ren X. Application of"Spinal cord fusion" in spinal cord injury repair and its neurological mechanism. Heliyon 2024; 10:e29422. [PMID: 38638967 PMCID: PMC11024622 DOI: 10.1016/j.heliyon.2024.e29422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Spinal cord injury (SCI) is a severely disabling and catastrophic condition that poses significant global clinical challenges. The difficulty of SCI repair results from the distinctive pathophysiological mechanisms, which are characterised by limited regenerative capacity and inadequate neuroplasticity of the spinal cord. Additionally, the formation of cystic cavities and astrocytic scars after SCI further obstructs both the ascending and descending neural conduction pathways. Consequently, the urgent challenge in post-SCI recovery lies in repairing the damaged spinal cord to reconstruct a functional and intact neural conduction circuit. In recent years, significant advancements in biological tissue engineering technology and novel therapies have resulted in a transformative shift in the field of SCI repair. Currently, SCI treatment primarily involves drug therapy, stem cell therapy, the use of biological materials, growth factors, and other approaches. This paper comprehensively reviews the progress in SCI research over the years, with a particular focus on the concept of "Spinal Cord Fusion" as a promising technique for SCI reconstruction. By discussing this important research progress and the neurological mechanisms involved, our aim is to help solve the problem of SCI repair as soon as possible and to bring new breakthroughs in the treatment of paraplegia after SCI.
Collapse
Affiliation(s)
- Tingting Shen
- Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH, 43221, United States
| | - Weihua Zhang
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH, 43221, United States
| | - Xiaogang Wang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH, 43221, United States
| | - Xiaoping Ren
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH, 43221, United States
| |
Collapse
|
4
|
Ren S, Zhang W, Liu H, Wang X, Guan X, Zhang M, Zhang J, Wu Q, Xue Y, Wang D, Liu Y, Liu J, Ren X. Transplantation of a vascularized pedicle of hemisected spinal cord to establish spinal cord continuity after removal of a segment of the thoracic spinal cord: A proof-of-principle study in dogs. CNS Neurosci Ther 2021; 27:1182-1197. [PMID: 34184402 PMCID: PMC8446222 DOI: 10.1111/cns.13696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction Glial scar formation impedes nerve regeneration/reinnervation after spinal cord injury (SCI); therefore, removal of scar tissue is essential for SCI treatment. Aims To investigate whether removing a spinal cord and transplanting a vascularized pedicle of hemisected spinal cord from the spinal cord caudal to the transection can restore motor function, to aid in the treatment of future clinical spinal cord injuries. We developed a canine model. After removal of a 1‐cm segment of the thoracic (T10–T11) spinal cord in eight beagles, a vascularized pedicle of hemisected spinal cord from the first 1.5 cm of the spinal cord caudal to the transection (cut along the posterior median sulcus of the spinal cord) was transplanted to bridge the transected spinal cord in the presence of a fusogen (polyethylene glycol, PEG) in four of the eight dogs. We used various forms of imaging, electron microscopy, and histologic data to determine that after our transplantation of a vascular pedicled hemisection to bridge the transected spinal cord, electrical continuity across the spinal bridge was restored. Results Motor function was restored following our transplantation, as confirmed by the re‐establishment of anatomic continuity along with interfacial axonal sprouting. Conclusion Taken together, our findings suggest that SCI patients—who have previously been thought to have irreversible damage and/or paralysis—may be treated effectively with similar operative techniques to re‐establish electrical and functional continuity following SCI.
Collapse
Affiliation(s)
- Shuai Ren
- Hand and Microsurgery Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Global Initiative to Cure Paralysis (GICUP), Columbus, OH, USA
| | - Weihua Zhang
- Global Initiative to Cure Paralysis (GICUP), Columbus, OH, USA.,Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China.,Institute of Orthopedic, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - HongMiao Liu
- Department of Pathology, The General Hospital of Heilongjiang Farms & Land Reclamation Administration Harbin, Harbin, China
| | - Xin Wang
- Department of Pathology, The General Hospital of Heilongjiang Farms & Land Reclamation Administration Harbin, Harbin, China
| | - Xiangchen Guan
- Hand and Microsurgery Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China
| | - Mingzhe Zhang
- Hand and Microsurgery Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China
| | - Jian Zhang
- Hand and Microsurgery Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China
| | - Qiong Wu
- Department of MR Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Xue
- Department of Orthopaedics, The Fifth Hospital of Harbin, Harbin, China
| | - Dan Wang
- Department of Pathology, The General Hospital of Heilongjiang Farms & Land Reclamation Administration Harbin, Harbin, China
| | - Yong Liu
- Department of Orthopaedics, The Fifth Hospital of Harbin, Harbin, China
| | - Jianyu Liu
- Hand and Microsurgery Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China
| | - Xiaoping Ren
- Global Initiative to Cure Paralysis (GICUP), Columbus, OH, USA.,Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China.,Institute of Orthopedic, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
5
|
Fusogens: Chemical Agents That Can Rapidly Restore Function After Nerve Injury. J Surg Res 2019; 233:36-40. [DOI: 10.1016/j.jss.2018.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 05/03/2018] [Accepted: 07/03/2018] [Indexed: 11/17/2022]
|
6
|
Neumann B, Linton C, Giordano-Santini R, Hilliard MA. Axonal fusion: An alternative and efficient mechanism of nerve repair. Prog Neurobiol 2018; 173:88-101. [PMID: 30500382 DOI: 10.1016/j.pneurobio.2018.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
Abstract
Injuries to the nervous system can cause lifelong morbidity due to the disconnect that occurs between nerve cells and their cellular targets. Re-establishing these lost connections is the ultimate goal of endogenous regenerative mechanisms, as well as those induced by exogenous manipulations in a laboratory or clinical setting. Reconnection between severed neuronal fibers occurs spontaneously in some invertebrate species and can be induced in mammalian systems. This process, known as axonal fusion, represents a highly efficient means of repair after injury. Recent progress has greatly enhanced our understanding of the molecular control of axonal fusion, demonstrating that the machinery required for the engulfment of apoptotic cells is repurposed to mediate the reconnection between severed axon fragments, which are subsequently merged by fusogen proteins. Here, we review our current understanding of naturally occurring axonal fusion events, as well as those being ectopically produced with the aim of achieving better clinical outcomes.
Collapse
Affiliation(s)
- Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne VIC 3800, Australia.
| | - Casey Linton
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rosina Giordano-Santini
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
7
|
Immediate and complete restoration of peripheral nerve function after injury is attainable by a combination of surgical and chemical interventions. Med Hypotheses 2018. [PMID: 29523297 DOI: 10.1016/j.mehy.2017.10.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite significant advances in almost every other aspect of medicine, physicians are still unable to restore function after nerve injury with any consistency or reliability. The current standard of care (which involves coaptation of the two ends via epineurial sutures) is largely unchanged from its first description over 400 years ago, and unfortunately leads to a recovery that is at best slow (taking months or years) and partial. Encouragingly, two new conceptual approaches are being developed that separately have been shown to improve outcomes. The first approach involves optimization of the mechanical aspects of nerve coaptation (with an emphasis on exceedingly "clean cuts" of the axon ends and moving any suture material far away from the coaptation site). The second approach involves manipulation of the chemical composition of the local environment at the cut ends of the nerve in order to promote re-establishment of membranous continuity. Though neither approach currently leads to results that reach those of uninjured controls, there is reason to believe that these two approaches can be used concurrently. Thus, we hypothesize that immediate and complete restoration of peripheral nerve function after injury is attainable by a combination of surgical and chemical interventions. The combination could be tested in rodents and non-human primates by assessing histology, electrical activity, intracellular diffusion, and functional status and could likely rapidly move to a clinical trial in humans. If the hypothesis is proven to be true, its impact would be profound, as it would positively affect not only recovery after traumatic nerve injury, but also functional status after allotransplantation, as well as introduce the prospects of advanced interfaces between human nerves and computer circuits.
Collapse
|
8
|
Salomone R, Jácomo AL, Nascimento SBD, Lezirovitz K, Hojaij FC, Costa HJZR, Bento RF. Polyethylene glycol fusion associated with antioxidants: A new promise in the treatment of traumatic facial paralysis. Head Neck 2018. [PMID: 29522265 DOI: 10.1002/hed.25122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Recent studies in invertebrates have taught us that early cell membrane regeneration is determinant for axonal recovery and survival after trauma. Many authors obtained extraordinary results in neural regeneration using polyethylene glycol fusion protocols, which also involved microsutures and antioxidants. METHODS Sixty rats were evaluated with functional and histological protocol after facial nerve neurotmesis. Groups A and B had their stumps coapted with microsuture after 24 hours of neurotmesis and groups C and D after 72 hours. In addition to the microstructure, groups B and D used the polyethylene glycol-fusion protocol for the modulation of the Ca+2 . RESULTS At the sixth week, the latency of group D and duration of group B was lower than groups A and C (P = .011). The axonal diameter of the groups that used polyethylene glycol-fusion was higher than those who did not use polyethylene glycol-fusion (P ≤ .001). CONCLUSION Although not providing a functional improvement, polyethylene glycol-fusion slowed down demyelination.
Collapse
Affiliation(s)
- Raquel Salomone
- Department of Otorhinolaryngology, University of São Paulo Medical School, São Paulo, Brazil
| | - Alfredo Luiz Jácomo
- Department of Surgery, Discipline of Human Structural Topography, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Karina Lezirovitz
- Department of Otorhinolaryngology, University of São Paulo Medical School, São Paulo, Brazil
| | - Flávio Carneiro Hojaij
- Department of Surgery, Discipline of Human Structural Topography, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Ricardo Ferreira Bento
- Department of Otorhinolaryngology, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
9
|
Ausman JI. Is it time to perform the first human head transplant? Comment on the CSA (CephaloSomatic Ansatomisis) paper by Ren, Canavero, and colleagues. Surg Neurol Int 2018; 9:28. [PMID: 29492328 PMCID: PMC5820846 DOI: 10.4103/sni.sni_472_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023] Open
Affiliation(s)
- James I Ausman
- Emeritus Editor-in-Chief and Publisher, SNI Publications, Professor, Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA and Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
10
|
Kim CY, Sikkema WKA, Kim J, Kim JA, Walter J, Dieter R, Chung HM, Mana A, Tour JM, Canavero S. Effect of Graphene Nanoribbons (TexasPEG) on locomotor function recovery in a rat model of lumbar spinal cord transection. Neural Regen Res 2018; 13:1440-1446. [PMID: 30106057 PMCID: PMC6108198 DOI: 10.4103/1673-5374.235301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A sharply transected spinal cord has been shown to be fused under the accelerating influence of membrane fusogens such as polyethylene glycol (PEG) (GEMINI protocol). Previous work provided evidence that this is in fact possible. Other fusogens might improve current results. In this study, we aimed to assess the effects of PEGylated graphene nanoribons (PEG-GNR, and called “TexasPEG” when prepared as 1wt% dispersion in PEG600) versus placebo (saline) on locomotor function recovery and cellular level in a rat model of spinal cord transection at lumbar segment 1 (L1) level. In vivo and in vitro experiments (n = 10 per experiment) were designed. In the in vivo experiment, all rats were submitted to full spinal cord transection at L1 level. Five weeks later, behavioral assessment was performed using the Basso Beattie Bresnahan (BBB) locomotor rating scale. Immunohistochemical staining with neuron marker neurofilament 200 (NF200) antibody and astrocytic scar marker glial fibrillary acidic protein (GFAP) was also performed in the injured spinal cord. In the in vitro experiment, the effects of TexasPEG application for 72 hours on the neurite outgrowth of SH-SY5Y cells were observed under the inverted microscope. Results of both in vivo and in vitro experiments suggest that TexasPEG reduces the formation of glial scars, promotes the regeneration of neurites, and thereby contributes to the recovery of locomotor function of a rat model of spinal cord transfection.
Collapse
Affiliation(s)
- C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University; Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - William K A Sikkema
- Department of Chemistry, Department of Materials Science and NanoEngineering, and The NanoCarbon Center, Rice University, Houston, TX, USA
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jeong Ah Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju-si, Chungbuk, Korea
| | - James Walter
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Raymond Dieter
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Andrea Mana
- HEAVEN/GEMINI International Collaborative Group, Turin, Italy
| | - James M Tour
- Department of Chemistry, Department of Materials Science and NanoEngineering, and The NanoCarbon Center, Rice University, Houston, TX, USA
| | - Sergio Canavero
- HEAVEN/GEMINI International Collaborative Group, Turin, Italy
| |
Collapse
|
11
|
Restoration of motor function after operative reconstruction of the acutely transected spinal cord in the canine model. Surgery 2017; 163:976-983. [PMID: 29223327 DOI: 10.1016/j.surg.2017.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/20/2017] [Accepted: 10/11/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cephalosomatic anastomosis or what has been called a "head transplantation" requires full reconnection of the respective transected ends of the spinal cords. The GEMINI spinal cord fusion protocol has been developed for this reason. Here, we report the first randomized, controlled study of the GEMINI protocol in large animals. METHODS We conducted a randomized, controlled study of a complete transection of the spinal cord at the level of T10 in dogs at Harbin Medical University, Harbin, China. These dogs were followed for up to 8 weeks postoperatively by assessments of recovery of motor function, somato-sensory evoked potentials, and diffusion tensor imaging using magnetic resonance imaging. RESULTS A total of 12 dogs were subjected to operative exposure of the dorsal aspect of the spinal cord after laminectomy and longitudinal durotomy followed by a very sharp, controlled, full-thickness, complete transection of the spinal cord at T10. The fusogen, polyethylene glycol, was applied topically to the site of the spinal cord transection in 7 of 12 dogs; 0.9% NaCl saline was applied to the site of transection in the remaining 5 control dogs. Dogs were selected randomly to receive polyethylene glycol or saline. All polyethylene glycol-treated dogs reacquired a substantial amount of motor function versus none in controls over these first 2 months as assessed on the 20-point (0-19), canine, Basso-Beattie-Bresnahan rating scale (P<.006). Somatosensory evoked potentials confirmed restoration of electrical conduction cranially across the site of spinal cord transection which improved over time. Diffusion tensor imaging, a magnetic resonance permutation that assesses the integrity of nerve fibers and cells, showed restitution of the transected spinal cord with polyethylene glycol treatment (at-injury level difference: P<.02). CONCLUSION A sharply and fully transected spinal cord at the level of T10 can be reconstructed with restoration of many aspects of electrical continuity in large animals following the GEMINI spinal cord fusion protocol, with objective evidence of motor recovery and of electrical continuity across the site of transection, opening the way to the first cephalosomatic anastomosis. (Surgery 2017;160:XXX-XXX.).
Collapse
|
12
|
Ren S, Liu ZH, Wu Q, Fu K, Wu J, Hou LT, Li M, Zhao X, Miao Q, Zhao YL, Wang SY, Xue Y, Xue Z, Guo YS, Canavero S, Ren XP. Polyethylene glycol-induced motor recovery after total spinal transection in rats. CNS Neurosci Ther 2017; 23:680-685. [PMID: 28612398 DOI: 10.1111/cns.12713] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 05/28/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
AIMS Despite more than a century of research, spinal paralysis remains untreatable via biological means. A new understanding of spinal cord physiology and the introduction of membrane fusogens have provided new hope that a biological cure may soon become available. However, proof is needed from adequately powered animal studies. METHODS AND RESULTS Two groups of rats (n=9, study group, n=6 controls) were submitted to complete transection of the dorsal cord at T10. The animals were randomized to receive either saline or polyethylene glycol (PEG) in situ. After 4 weeks, the treated group had recovered ambulation vs none in the control group (BBB scores; P=.0145). One control died. All animals were studied with somatosensory-evoked potentials (SSEP) and diffusion tensor imaging (DTI). SSEP recovered postoperatively only in PEG-treated rats. At study end, DTI showed disappearance of the transection gap in the treated animals vs an enduring gap in controls (fractional anisotropy/FA at level: P=.0008). CONCLUSIONS We show for the first time in an adequately powered study that the paralysis attendant to a complete transection of the spinal cord can be reversed. This opens the path to a severance-reapposition cure of spinal paralysis, in which the injured segment is excised and the two stumps approximated after vertebrectomy/diskectomies.
Collapse
Affiliation(s)
- Shuai Ren
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China
| | - Ze-Han Liu
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China
| | - Qiong Wu
- Department of MRI Diagnosis, the second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kuang Fu
- Department of MRI Diagnosis, the second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Wu
- Department of Neurology, the second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li-Ting Hou
- Department of Anesthesia, the second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Li
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China
| | - Xin Zhao
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China
| | - Qing Miao
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China
| | - Yun-Long Zhao
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China
| | - Sheng-Yu Wang
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China
| | - Yan Xue
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China
| | - Zhen Xue
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China
| | - Ya-Shan Guo
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China
| | - Sergio Canavero
- HEAVEN/GEMINI International Collaborative Group, Turin, Italy
| | - Xiao-Ping Ren
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China.,Department of Molecular Pharmacology & Therapeutics, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
|
14
|
Canavero S, Ren X. Houston, GEMINI has landed: Spinal cord fusion achieved. Surg Neurol Int 2016; 7:S626-8. [PMID: 27656324 PMCID: PMC5025958 DOI: 10.4103/2152-7806.190473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 11/23/2022] Open
Affiliation(s)
- Sergio Canavero
- HEAVEN/GEMINI International Collaborative Group, Turin, Italy
| | - Xiaoping Ren
- HEAVEN/GEMINI International Collaborative Group, Turin, Italy
| |
Collapse
|