1
|
Ingham B, Sung R, Kay P, Hollywood K, Wongsirichot P, Veitch A, Winterburn J. Determining the accuracy and suitability of common analytical techniques for sophorolipid biosurfactants. J Ind Microbiol Biotechnol 2024; 51:kuae021. [PMID: 38906848 PMCID: PMC11223654 DOI: 10.1093/jimb/kuae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/20/2024] [Indexed: 06/23/2024]
Abstract
To determine the performance of a sophorolipid biosurfactant production process, it is important to have accurate and specific analytical techniques in place. Among the most popular are the anthrone assay, gravimetric quantification (hexane:ethyl acetate extraction), and high-performance liquid chromatography (HPLC). The choice of analytical tool varies depending on cost, availability, and ease of use; however, these techniques have never been compared directly against one another. In this work, 75 fermentation broths with varying product/substrate concentrations were comprehensively tested with the 3 techniques and compared. HPLC-ultraviolet detection (198 nm) was capable of quantifying C18:1 subterminal hydroxyl diacetylated lactonic sophorolipid down to a lower limit of 0.3 g/L with low variability (<3.21%). Gravimetric quantification of the broths following liquid:liquid extraction with hexane and ethyl acetate showed some linearity (R2 = .658) when compared to HPLC but could not quantify lower than 11.06 g/L, even when no sophorolipids were detected in the sample, highlighting the non-specificity of the method to co-extract non-sophorolipid components in the final gravimetric measure. The anthrone assay showed no linearity (R2 = .129) and was found to cross-react with media components (rapeseed oil, corn steep liquor, glucose), leading to consistent overestimation of sophorolipid concentration. The appearance of poor biomass separation during sample preparation with centrifugation was noted and resolved with a novel sample preparation method with pure ethanol. Extensive analysis and comparisons of the most common sophorolipid quantification techniques are explored and the limitations/advantages are highlighted. The findings provide a guide for scientists to make an informed decision on the suitable quantification tool that meets their needs, exploring all aspects of the analysis process from harvest, sample preparation, and analysis.
Collapse
Affiliation(s)
- Benjamin Ingham
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Rehana Sung
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester M1 7DN, UK
| | - Phil Kay
- JMP Statistical Discovery LLC, Wittington House, Henley Road, Medmenham, Marlow SL7 2EB, UK
| | - Katherine Hollywood
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester M1 7DN, UK
| | - Phavit Wongsirichot
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Alistair Veitch
- Holiferm Ltd, Unit 15, Severnside Trading Estate, Textilose Road, Trafford Park, Stretford, Manchester M17 1WA, UK
| | - James Winterburn
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
2
|
Abdulrahman I, Jamal MT, Pugazhendi A, Dhavamani J, Al-Shaeri M, Al-Maaqar S, Satheesh S. Antibacterial and antibiofilm activity of extracts from sponge-associated bacterial endophytes. Prep Biochem Biotechnol 2023; 53:1143-1153. [PMID: 36840506 DOI: 10.1080/10826068.2023.2175366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Sponges forms association with many bacteria that serve as sources of new bioactive compounds. The compounds are produced in response to environmental and nutritional conditions of the environment that enable them to protect their host from colonization. In this study, three sponge bacterial endophytes were isolated, identified, and subjected to solvent extraction processes. The identified bacteria are Bacillus amyloquifaciens, Bacillus paramycoides, and Enterobacter sp. The bacteria were cultured in two different fermentation media with varying nutritional composition for the extraction process. The extracts were evaluated for antibacterial and antibiofilm activity against microfouling bacteria and the chemical composition of each extract was analyzed via gas chromatography-mass spectrometry (GC-MS). The extract from the endophytes shows varying antibacterial and antibiofilm activity against the tested strains. Several compounds were detected from the extracts including some with known antibacterial/antibiofilm activity. The results showed variations in activity and secondary metabolite production between the extracts obtained under different nutritional composition of the media. In conclusion, this study indicated the role of nutrient composition in the activity and secondary metabolites production by bacteria associated with sponge Also, this study confirmed the role of sponge bacterial endophytes as producers of bioactive compounds with potential application as antifouling (AF) agents.
Collapse
Affiliation(s)
- Idris Abdulrahman
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Microbiology, Faculty of Sciences, Kaduna State University, Kaduna, Nigeria
| | - Mamdoh Taha Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Arulazhagan Pugazhendi
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Jeyakumar Dhavamani
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Majed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Saleh Al-Maaqar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Biology, Faculty of Education, Al-Baydha University, Al-Baydha, Yemen
| | - Sathianeson Satheesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
He Q, Miao S, Ni N, Man Y, Gong K. A Review of the Secondary Metabolites From the Marine Sponges of the Genus Aaptos. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20951439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Marine sponges, which belong to the phylum Porifera (Metazoa), are considered the single best source of marine natural products. Among them, members of the genus Aaptos are attractive targets for marine natural product research owing to their abundant biogenetic ability to produce aaptamine derivatives. Apart from aaptamine alkaloids, there are also reports of other compounds from Aaptos sponges. This work reviews the secondary metabolites isolated from Aaptos species from 1982 to 2020, with 46 citations referring to 62 compounds (47 for aaptamines and 15 for others). The emphasis is placed on the structure of the organic molecules, relevant biological activities, chemical ecology aspects, and biosynthesis studies, which are described in the classifications of aaptamines and other compounds in the order of the published year.
Collapse
Affiliation(s)
- Qianqian He
- Cancer Research Institute, Binzhou Medical University Hospital, Shandong, P. R. China
- Department of Pharmacy, Binzhou Medical University Hospital, Shandong, P. R. China
| | - Shuang Miao
- Cancer Research Institute, Binzhou Medical University Hospital, Shandong, P. R. China
| | - Na Ni
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Shandong, P. R. China
| | - Yuqing Man
- Department of Pharmacy, Binzhou Medical University Hospital, Shandong, P. R. China
| | - Kaikai Gong
- Cancer Research Institute, Binzhou Medical University Hospital, Shandong, P. R. China
| |
Collapse
|
4
|
Ruiz-Torres V, Rodríguez-Pérez C, Herranz-López M, Martín-García B, Gómez-Caravaca AM, Arráez-Román D, Segura-Carretero A, Barrajón-Catalán E, Micol V. Marine Invertebrate Extracts Induce Colon Cancer Cell Death via ROS-Mediated DNA Oxidative Damage and Mitochondrial Impairment. Biomolecules 2019; 9:biom9120771. [PMID: 31771155 PMCID: PMC6995635 DOI: 10.3390/biom9120771] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 12/29/2022] Open
Abstract
Marine compounds are a potential source of new anticancer drugs. In this study, the antiproliferative effects of 20 invertebrate marine extracts on three colon cancer cell models (HGUE-C-1, HT-29, and SW-480) were evaluated. Extracts from two nudibranchs (Phyllidia varicosa, NA and Dolabella auricularia, NB), a holothurian (Pseudocol ochirus violaceus, PS), and a soft coral (Carotalcyon sp., CR) were selected due to their potent cytotoxic capacities. The four marine extracts exhibited strong antiproliferative effects and induced cell cycle arrest at the G2/M transition, which evolved into early apoptosis in the case of the CR, NA, and NB extracts and necrotic cell death in the case of the PS extract. All the extracts induced, to some extent, intracellular ROS accumulation, mitochondrial depolarization, caspase activation, and DNA damage. The compositions of the four extracts were fully characterized via HPLC-ESI-TOF-MS analysis, which identified up to 98 compounds. We propose that, among the most abundant compounds identified in each extract, diterpenes, steroids, and sesqui- and seterterpenes (CR); cembranolides (PS); diterpenes, polyketides, and indole terpenes (NA); and porphyrin, drimenyl cyclohexanone, and polar steroids (NB) might be candidates for the observed activity. We postulate that reactive oxygen species (ROS) accumulation is responsible for the subsequent DNA damage, mitochondrial depolarization, and cell cycle arrest, ultimately inducing cell death by either apoptosis or necrosis.
Collapse
Affiliation(s)
- Verónica Ruiz-Torres
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (M.H.-L.); (V.M.)
| | - Celia Rodríguez-Pérez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain (D.A.-R.); (A.S.-C.)
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - María Herranz-López
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (M.H.-L.); (V.M.)
| | - Beatriz Martín-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain (D.A.-R.); (A.S.-C.)
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - Ana-María Gómez-Caravaca
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain (D.A.-R.); (A.S.-C.)
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain (D.A.-R.); (A.S.-C.)
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (M.H.-L.); (V.M.)
- Correspondence: ; Tel.: +34-965-222-586
| | - Vicente Micol
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (M.H.-L.); (V.M.)
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III., Palma de Mallorca 07122, Spain
| |
Collapse
|