1
|
Choi S, Hike D, Pohmann R, Avdievich N, Gomez-Cid L, Man W, Scheffler K, Yu X. Alpha-180 spin-echo based line-scanning method for high resolution laminar-specific fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.09.540065. [PMID: 37214920 PMCID: PMC10197646 DOI: 10.1101/2023.05.09.540065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Laminar-specific functional magnetic resonance imaging (fMRI) has been widely used to study circuit-specific neuronal activity by mapping spatiotemporal fMRI response patterns across cortical layers. Hemodynamic responses reflect indirect neuronal activity given limit of spatial and temporal resolution. Previous gradient-echo based line-scanning fMRI (GELINE) method was proposed with high temporal (50 ms) and spatial (50 µm) resolution to better characterize the fMRI onset time across cortical layers by employing 2 saturation RF pulses. However, the imperfect RF saturation performance led to poor boundary definition of the reduced region of interest (ROI) and aliasing problems outside of the ROI. Here, we propose α (alpha)-180 spin-echo-based line-scanning fMRI (SELINE) method to resolve this issue by employing a refocusing 180° RF pulse perpendicular to the excitation slice. In contrast to GELINE signals peaked at the superficial layer, we detected varied peaks of laminar-specific BOLD signals across deeper cortical layers with the SELINE method, indicating the well-defined exclusion of the large drain-vein effect with the spin-echo sequence. Furthermore, we applied the SELINE method with 200 ms TR to sample the fast hemodynamic changes across cortical layers with a less draining vein effect. In summary, this SELINE method provides a novel acquisition scheme to identify microvascular-sensitive laminar-specific BOLD responses across cortical depth.
Collapse
|
2
|
Epp R, Glück C, Binder NF, El Amki M, Weber B, Wegener S, Jenny P, Schmid F. The role of leptomeningeal collaterals in redistributing blood flow during stroke. PLoS Comput Biol 2023; 19:e1011496. [PMID: 37871109 PMCID: PMC10621965 DOI: 10.1371/journal.pcbi.1011496] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 11/02/2023] [Accepted: 09/03/2023] [Indexed: 10/25/2023] Open
Abstract
Leptomeningeal collaterals (LMCs) connect the main cerebral arteries and provide alternative pathways for blood flow during ischaemic stroke. This is beneficial for reducing infarct size and reperfusion success after treatment. However, a better understanding of how LMCs affect blood flow distribution is indispensable to improve therapeutic strategies. Here, we present a novel in silico approach that incorporates case-specific in vivo data into a computational model to simulate blood flow in large semi-realistic microvascular networks from two different mouse strains, characterised by having many and almost no LMCs between middle and anterior cerebral artery (MCA, ACA) territories. This framework is unique because our simulations are directly aligned with in vivo data. Moreover, it allows us to analyse perfusion characteristics quantitatively across all vessel types and for networks with no, few and many LMCs. We show that the occlusion of the MCA directly caused a redistribution of blood that was characterised by increased flow in LMCs. Interestingly, the improved perfusion of MCA-sided microvessels after dilating LMCs came at the cost of a reduced blood supply in other brain areas. This effect was enhanced in regions close to the watershed line and when the number of LMCs was increased. Additional dilations of surface and penetrating arteries after stroke improved perfusion across the entire vasculature and partially recovered flow in the obstructed region, especially in networks with many LMCs, which further underlines the role of LMCs during stroke.
Collapse
Affiliation(s)
- Robert Epp
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Nadine Felizitas Binder
- Deptartment of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Mohamad El Amki
- Deptartment of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Susanne Wegener
- Deptartment of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Patrick Jenny
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
| | - Franca Schmid
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Liu C, Zhu N, Sun H, Zhang J, Feng X, Gjerswold-Selleck S, Sikka D, Zhu X, Liu X, Nuriel T, Wei HJ, Wu CC, Vaughan JT, Laine AF, Provenzano FA, Small SA, Guo J. Deep learning of MRI contrast enhancement for mapping cerebral blood volume from single-modal non-contrast scans of aging and Alzheimer's disease brains. Front Aging Neurosci 2022; 14:923673. [PMID: 36034139 PMCID: PMC9407020 DOI: 10.3389/fnagi.2022.923673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
While MRI contrast agents such as those based on Gadolinium are needed for high-resolution mapping of brain metabolism, these contrast agents require intravenous administration, and there are rising concerns over their safety and invasiveness. Furthermore, non-contrast MRI scans are more commonly performed than those with contrast agents and are readily available for analysis in public databases such as the Alzheimer's Disease Neuroimaging Initiative (ADNI). In this article, we hypothesize that a deep learning model, trained using quantitative steady-state contrast-enhanced structural MRI datasets, in mice and humans, can generate contrast-equivalent information from a single non-contrast MRI scan. The model was first trained, optimized, and validated in mice, and was then transferred and adapted to humans. We observe that the model can substitute for Gadolinium-based contrast agents in approximating cerebral blood volume, a quantitative representation of brain activity, at sub-millimeter granularity. Furthermore, we validate the use of our deep-learned prediction maps to identify functional abnormalities in the aging brain using locally obtained MRI scans, and in the brain of patients with Alzheimer's disease using publicly available MRI scans from ADNI. Since it is derived from a commonly-acquired MRI protocol, this framework has the potential for broad clinical utility and can also be applied retrospectively to research scans across a host of neurological/functional diseases.
Collapse
Affiliation(s)
- Chen Liu
- Department of Electrical Engineering, Columbia University, New York, NY, United States
| | - Nanyan Zhu
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Haoran Sun
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Junhao Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Xinyang Feng
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | | | - Dipika Sikka
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Xuemin Zhu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Xueqing Liu
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Tal Nuriel
- Department of Radiation Oncology, Columbia University, New York, NY, United States
| | - Hong-Jian Wei
- Department of Radiation Oncology, Columbia University, New York, NY, United States
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University, New York, NY, United States
| | - J. Thomas Vaughan
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Andrew F. Laine
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | | | - Scott A. Small
- Department of Neurology, Columbia University, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Jia Guo
- Department of Psychiatry, Columbia University, New York, NY, United States
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- *Correspondence: Jia Guo
| |
Collapse
|
4
|
Li M, Li S, Han Y, Zhang T. GVC-Net:Global Vascular Context Network for Cerebrovascular Segmentation Using Sparse Labels. Ing Rech Biomed 2022. [DOI: 10.1016/j.irbm.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Kang M, Jin S, Cho H. MRI investigation of vascular remodeling for heterogeneous edema lesions in subacute ischemic stroke rat models: Correspondence between cerebral vessel structure and function. J Cereb Blood Flow Metab 2021; 41:3273-3287. [PMID: 34233533 PMCID: PMC8669276 DOI: 10.1177/0271678x211029197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The spatial heterogeneity in the temporal occurrence of pseudo-normalization of MR apparent diffusion coefficient values for ischemic lesions may be related to morphological and functional vascular remodeling. As the area of accelerated pseudo-normalization tends to expand faster and more extensively into the chronic stage, detailed vascular characterization of such areas is necessary. During the subacute stage of transient middle cerebral artery occlusion rat models, the morphological size of the macrovasculature, microvascular vessel size index (VSI), and microvessel density (MVD) were quantified along with functional perfusion measurements of the relative cerebral blood flow (rCBF) and mean transit time (rMTT) of the corresponding areas (33 cases for each parameter). When compared with typical pseudo-normalization lesions, early pseudo-normalization lesions exhibited larger VSI and rCBF (p < 0.001) at reperfusion days 4 and 7, along with reduced MVD and elongated rMTT (p < 0.001) at reperfusion days 1, 4, and 7. The group median VSI and rCBF exhibited a strong positive correlation (r = 0.92), and the corresponding MVD and rMTT showed a negative correlation (r = -0.48). Light sheet fluorescence microscopy images were used to quantitatively validate the corresponding MRI-derived microvascular size, density, and cerebral blood volume.
Collapse
Affiliation(s)
| | | | - HyungJoon Cho
- HyungJoon Cho, Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Unist-gil 50 (100 Banyeon-ri), Eonyang-eup, Uljugun, Ulsan Metropolitan City 689-798, South Korea.
| |
Collapse
|
6
|
Kakkar P, Kakkar T, Patankar T, Saha S. Current approaches and advances in the imaging of stroke. Dis Model Mech 2021; 14:273651. [PMID: 34874055 PMCID: PMC8669490 DOI: 10.1242/dmm.048785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A stroke occurs when the blood flow to the brain is suddenly interrupted, depriving brain cells of oxygen and glucose and leading to further cell death. Neuroimaging techniques, such as computed tomography and magnetic resonance imaging, have greatly improved our ability to visualise brain structures and are routinely used to diagnose the affected vascular region of a stroke patient's brain and to inform decisions about clinical care. Currently, these multimodal imaging techniques are the backbone of the clinical management of stroke patients and have immensely improved our ability to visualise brain structures. Here, we review recent developments in the field of neuroimaging and discuss how different imaging techniques are used in the diagnosis, prognosis and treatment of stroke. Summary: Stroke imaging has undergone seismic shifts in the past decade. Although magnetic resonance imaging (MRI) is superior to computed tomography in providing vital information, further research on MRI is still required to bring its full potential into clinical practice.
Collapse
Affiliation(s)
- Pragati Kakkar
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | - Tarun Kakkar
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | | | - Sikha Saha
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
7
|
Yoon Y, Voloudakis G, Doran N, Zhang E, Dimovasili C, Chen L, Shao Z, Darmanis S, Tang C, Tang J, Wang VX, Hof PR, Robakis NK, Georgakopoulos A. PS1 FAD mutants decrease ephrinB2-regulated angiogenic functions, ischemia-induced brain neovascularization and neuronal survival. Mol Psychiatry 2021; 26:1996-2012. [PMID: 32541930 PMCID: PMC7736163 DOI: 10.1038/s41380-020-0812-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Microvascular pathology and ischemic lesions contribute substantially to neuronal dysfunction and loss that lead to Alzheimer disease (AD). To facilitate recovery, the brain stimulates neovascularization of damaged tissue via sprouting angiogenesis, a process regulated by endothelial cell (EC) sprouting and the EphB4/ephrinB2 system. Here, we show that in cultures of brain ECs, EphB4 stimulates the VE-cadherin/Rok-α angiogenic complexes known to mediate sprouting angiogenesis. Importantly, brain EC cultures expressing PS1 FAD mutants decrease the EphB4-stimulated γ-secretase cleavage of ephrinB2 and reduce production of the angiogenic peptide ephrinB2/CTF2, the VE-cadherin angiogenic complexes and EC sprouting and tube formation. These data suggest that FAD mutants may attenuate ischemia-induced brain angiogenesis. Supporting this hypothesis, ischemia-induced VE-cadherin angiogenic complexes, levels of neoangiogenesis marker Endoglin, vascular density, and cerebral blood flow recovery, are all decreased in brains of mouse models expressing PS1 FAD mutants. Ischemia-induced brain neuronal death and cognitive deficits also increase in these mice. Furthermore, a small peptide comprising the C-terminal sequence of peptide ephrinB2/CTF2 rescues angiogenic functions of brain ECs expressing PS1 FAD mutants. Together, our data show that PS1 FAD mutations impede the EphB4/ephrinB2-mediated angiogenic functions of ECs and impair brain neovascularization, neuronal survival and cognitive recovery following ischemia. Furthermore, our data reveal a novel brain angiogenic mechanism targeted by PS1 FAD mutants and a potential therapeutic target for ischemia-induced neurodegeneration. Importantly, FAD mutant effects occur in absence of neuropathological hallmarks of AD, supporting that such hallmarks may form downstream of mutant effects on neoangiogenesis and neuronal survival.
Collapse
Affiliation(s)
- YoneJung Yoon
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Georgios Voloudakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nathan Doran
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Zhang
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christina Dimovasili
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lei Chen
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Zhiping Shao
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Spyros Darmanis
- Departments of Bioengineering and Applied Physics, Stanford University and Chan Zuckerberg Biohub, Stanford, CA, 94305, USA
| | - Cheuk Tang
- Department of Radiology, Neuroscience and Psychiatry Translational and Molecular Imaging Institute at Mount Sinai, New York, NY, USA
| | - Jun Tang
- Department of Radiology, Neuroscience and Psychiatry Translational and Molecular Imaging Institute at Mount Sinai, New York, NY, USA
| | - Victoria X Wang
- Department of Radiology, Translational and Molecular Imaging Institute at Mount Sinai, New York, NY, USA
| | - Patrick R Hof
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikolaos K Robakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Anastasios Georgakopoulos
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Aryal R, Patabendige A. Blood-brain barrier disruption in atrial fibrillation: a potential contributor to the increased risk of dementia and worsening of stroke outcomes? Open Biol 2021; 11:200396. [PMID: 33878948 PMCID: PMC8059575 DOI: 10.1098/rsob.200396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Atrial fibrillation (AF) has become one of the most significant health problems worldwide, warranting urgent answers to currently pending questions on the effects of AF on brain function. Recent evidence has emerged to show an association between AF and an increased risk of developing dementia and worsening of stroke outcomes. A healthy brain is protected by the blood–brain barrier (BBB), which is formed by the endothelial cells that line cerebral capillaries. These endothelial cells are continuously exposed to shear stress (the frictional force generated by blood flow), which affects endothelial cell structure and function. Flow disturbances as experienced during AF can disrupt the BBB and leave the brain vulnerable to damage. Investigating the plausible mechanisms in detail, linking AF to cerebrovascular damage is difficult in humans, leading to paucity of available clinical data. Here, we discuss the available evidence for BBB disruption during AF due to altered cerebral blood flow, and how this may contribute to an increased risk of dementia and worsening of stroke outcomes.
Collapse
Affiliation(s)
- Ritambhara Aryal
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia.,Brain and Mental Health Research Programme, Hunter Medical Research Institute, Newcastle, Australia
| | - Adjanie Patabendige
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia.,Brain and Mental Health Research Programme, Hunter Medical Research Institute, Newcastle, Australia.,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
9
|
Hingot V, Brodin C, Lebrun F, Heiles B, Chagnot A, Yetim M, Gauberti M, Orset C, Tanter M, Couture O, Deffieux T, Vivien D. Early Ultrafast Ultrasound Imaging of Cerebral Perfusion correlates with Ischemic Stroke outcomes and responses to treatment in Mice. Am J Cancer Res 2020; 10:7480-7491. [PMID: 32685000 PMCID: PMC7359089 DOI: 10.7150/thno.44233] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
In the field of ischemic cerebral injury, precise characterization of neurovascular hemodynamic is required to select candidates for reperfusion treatments. It is thus admitted that advanced imaging-based approaches would be able to better diagnose and prognose those patients and would contribute to better clinical care. Current imaging modalities like MRI allow a precise diagnostic of cerebral injury but suffer from limited availability and transportability. The recently developed ultrafast ultrasound could be a powerful tool to perform emergency imaging and long term follow-up of cerebral perfusion, which could, in combination with MRI, improve imaging solutions for neuroradiologists. Methods: In this study, in a model of in situ thromboembolic stroke in mice, we compared a control group of non-treated mice (N=10) with a group receiving the gold standard pharmacological stroke therapy (N=9). We combined the established tool of magnetic resonance imaging (7T MRI) with two innovative ultrafast ultrasound methods, ultrafast Doppler and Ultrasound Localization Microscopy, to image the cerebral blood volumes at early and late times after stroke onset and compare with the formation of ischemic lesions. Results: Our study shows that ultrafast ultrasound can be used through the mouse skull to monitor cerebral perfusion during ischemic stroke. In our data, the monitoring of the reperfusion following thrombolytic within the first 2 h post stroke onset matches ischemic lesions measured 24 h. Moreover, similar results can be made with Ultrasound Localization Microscopy which could make it applicable to human patients in the future. Conclusion: We thus provide the proof of concept that in a mouse model of thromboembolic stroke with an intact skull, early ultrafast ultrasound can be indicative of responses to treatment and cerebral tissue fates following stroke. It brings new tools to study ischemic stroke in preclinical models and is the first step prior translation to the clinical settings.
Collapse
|
10
|
Wu S, Zhang H, Wang J, Li X, Gao X, Fang Z, Qu J, Wu Y, Ren Y, Rui W, Zhang J, Yao Z. Iron Sucrose as MRI Contrast Agent in Ischemic Stroke Model. J Magn Reson Imaging 2020; 52:836-849. [PMID: 32112623 DOI: 10.1002/jmri.27109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Despite the growing concern about the safety of gadolinium-based contrast agents (GBCAs), they are still the most commonly used. Ferumoxytol, as an off-label alternative MRI contrast agent, cannot be administered by a rapid bolus for dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI). PURPOSE To assess the feasibility of iron sucrose (IS) as a contrast agent for MR angiography (MRA) and DSC-PWI. STUDY TYPE Prospective animal model. ANIMAL MODEL Thirty-six normal rats (16 for MRA, 20 for biocompability tests) and 36 occlusion of the middle cerebral artery (MCAO) model rats. FIELD STRENGTH/SEQUENCE 3.0T; head and neck angiography, using a fast spoiled gradient-recalled-echo (FSPGR) sequence and DSC-MRI using echo planar imaging(EPI) sequence. ASSESSMENT MRA was performed on normal rats to examine the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of different doses of IS. DSC-PWI was performed on MCAO rats at 0, 24, 48, and 72 hours postreperfusion to investigate the lesion detectability of IS. Arterial spin labeling (ASL) and DSC-PWI enhanced by GBCAs were conducted on MCAO rats as controls. STATISTICAL TESTS Kruskal-Wallis test was used to compare qualitative assessment. One-way analysis of variance (ANOVA) was used to compare the parametric data. Pearson's r values were evaluated between relative cerebral blood flow(rCBF)-ASL, rCBF-DSCIS , and rCBF obtained from DSC-PWI enhanced by GBCA. RESULTS The mean SNR and CNR of the common carotid artery at doses of 10 mg Fe/kg of IS were comparable with the standard dose of GBCAs (SNR: 68.04 ± 12.55 vs. 67.72 ± 14.66; CNR: 23.78 ± 7.21vs. 21.63 ± 6.83). In MCAO rat models, rCBF and relative cerebral blood volume (rCBV) of ipsilateral striatum declined (0.72 ± 0.14, 0.86 ± 0.11) with prolonged relative mean transit time (rMTT) and relative time-to-peak (rTTP) (1.27 ± 0.24, 1.07 ± 0.03) following occlusion. Hyperperfusion was observed in all rats at 48 and 72 hours postreperfusion, in 4/6 rats at 24 hours postreperfusion for IS-mediated DSC-PWI. DATA CONCLUSION IS may be an effective contrast agent for both MRA and DSC-PWI in ischemic stroke models. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 1 J. Magn. Reson. Imaging 2020;52:836-849.
Collapse
Affiliation(s)
- Shiman Wu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hua Zhang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinyi Gao
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ziwei Fang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianxun Qu
- GE Healthcare, MR research, Applied Science Lab, Shanghai, China
| | - Yue Wu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Ren
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenting Rui
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Junhai Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Cerebral blood perfusion deficits using dynamic susceptibility contrast MRI with gadolinium chelates in rats with post-ischemic reperfusion without significant dynamic contrast-enhanced MRI-derived vessel permeabilities: A cautionary note. PLoS One 2018; 13:e0201076. [PMID: 30044884 PMCID: PMC6059480 DOI: 10.1371/journal.pone.0201076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 07/06/2018] [Indexed: 11/22/2022] Open
Abstract
In this study, we quantified perfusion deficits using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with an extravasating contrast agent (CA). We also investigated the efficacy of leakage compensation from CA pre-load in brains from post-ischemic rat models without significant dynamic contrast-enhanced MRI (DCE-MRI)-derived vessel wall permeability. DSC measurements were obtained using fast (0.3 s) echo-planar imaging in both normal rats and rats with transient middle carotid artery occlusion (MCAO) (1-h MCAO, 24-h reperfusion) after successive administrations of gadoterate meglumine (Dotarem) and intravascular superparamagnetic iron oxide nanoparticles (SPION). The relative cerebral blood volume (CBV) and cerebral blood flow (CBF) values acquired using Dotarem were significantly underestimated (~20%) when compared to those acquired using SPION in ipsilesional post-ischemic brain regions. A slight overestimation of relative mean transit time was observed. Areas with underestimated CBV and CBF values from the corresponding error maps encompassed the area of infarcted tissue (apparent diffusion coefficient < 500 μm2/s) and mostly coincided with the area wherein conspicuous longitudinal relaxation time differences were observed pre- vs. post-injection of Dotarem. The DSC measurements with significant pre-load (0.3 mmol·kg-1) of Dotarem displayed minimal perfusion deficits when compared to those determined using the reference intravascular SPION.
Collapse
|
12
|
Mahara A, Enmi JI, Hsu YI, Kobayashi N, Hirano Y, Iida H, Yamaoka T. Superfine Magnetic Resonance Imaging of the Cerebrovasculature Using Self-Assembled Branched Polyethylene Glycol-Gd Contrast Agent. Macromol Biosci 2018; 18:e1700391. [PMID: 29665311 DOI: 10.1002/mabi.201700391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/15/2018] [Indexed: 12/12/2022]
Abstract
Magnetic resonance angiography is an attractive method for the visualization of the cerebrovasculature, but small-sized vessels are hard to visualize with the current clinically approved agents. In this study, a polymeric contrast agent for the superfine imaging of the cerebrovasculature is presented. Eight-arm polyethylene glycol with a molecular weight of ≈17 000 Da conjugated with a Gd chelate and fluorescein (F-8-arm PEG-Gd) is used. The relaxivity rate is 9.3 × 10-3 m-1 s-1 , which is threefold higher than that of free Gd chelate. Light scattering analysis reveals that F-8-arm PEG-Gd is formed by self-assembly. When the F-8-arm PEG-Gd is intravenously injected, cerebrovasculature as small as 100 µm in diameter is clearly visualized. However, signals are not enhanced when Gd chelate and Gd chelate-conjugated 8-arm PEG are injected. Furthermore, small vasculature around infarct region in rat stroke model can be visualized. These results suggest that F-8-arm PEG-Gd enhances the MR imaging of cerebrovasculature.
Collapse
Affiliation(s)
- Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Jun-Ichiro Enmi
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Yu-I Hsu
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Naoki Kobayashi
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka, 565-8680, Japan
| | - Yoshiaki Hirano
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka, 565-8680, Japan
| | - Hidehiro Iida
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| |
Collapse
|
13
|
Chandra A, Li WA, Stone CR, Geng X, Ding Y. The cerebral circulation and cerebrovascular disease I: Anatomy. Brain Circ 2017; 3:45-56. [PMID: 30276305 PMCID: PMC6126264 DOI: 10.4103/bc.bc_10_17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/28/2017] [Accepted: 06/07/2017] [Indexed: 11/28/2022] Open
Abstract
In this paper, which is the first in a three-part series that reviews cerebrovascular anatomy, pathogenesis, and stroke, we lay the anatomical foundation for the rest of the series. Beginning with its origin in the branches of the aorta, we start by describing the arterial system. This system is partitioned into two major divisions (anterior and posterior circulations) that differ significantly in features and pathogenic potential. The systems, and the major branches that comprise them, are described. Description of the arterial system proceeds to the point of the fulfillment of its function. This function, the exchange of gases and nutrients with the cerebral parenchyma, is the subject of a subsequent section on the microcirculation and blood-brain barrier. Finally, the cerebral venous system, which is composed of cerebral veins and dural venous sinuses, is described. Thus, an anatomical context is supplied for the discussion of cerebrovascular disease pathogenesis provided by our second paper.
Collapse
Affiliation(s)
- Ankush Chandra
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - William A Li
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Christopher R Stone
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
14
|
Kao YCJ, Oyarzabal EA, Zhang H, Faber JE, Shih YYI. Role of Genetic Variation in Collateral Circulation in the Evolution of Acute Stroke: A Multimodal Magnetic Resonance Imaging Study. Stroke 2017; 48:754-761. [PMID: 28188261 DOI: 10.1161/strokeaha.116.015878] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE No studies have determined the effect of differences in pial collateral extent (number and diameter), independent of differences in environmental factors and unknown genetic factors, on severity of stroke. We examined ischemic tissue evolution during acute stroke, as measured by magnetic resonance imaging and histology, by comparing 2 congenic mouse strains with otherwise identical genetic backgrounds but with different alleles of the Determinant of collateral extent-1 (Dce1) genetic locus. We also optimized magnetic resonance perfusion and diffusion-deficit thresholds by using histological measures of ischemic tissue. METHODS Perfusion, diffusion, and T2-weighted magnetic resonance imaging were performed on collateral-poor (congenic-Bc) and collateral-rich (congenic-B6) mice at 1, 5, and 24 hours after permanent middle cerebral artery occlusion. Magnetic resonance imaging-derived penumbra and ischemic core volumes were confirmed by histology in a subset of mice at 5 and 24 hours after permanent middle cerebral artery occlusion. RESULTS Although perfusion-deficit volumes were similar between strains 1 hour after permanent middle cerebral artery occlusion, diffusion-deficit volumes were 32% smaller in collateral-rich mice. At 5 hours, collateral-rich mice had markedly restored perfusion patterns showing reduced perfusion-deficit volumes, smaller infarct volumes, and smaller perfusion-diffusion mismatch volumes compared with the collateral-poor mice (P<0.05). At 24 hours, collateral-rich mice had 45% smaller T2-weighted lesion volumes (P<0.005) than collateral-poor mice, with no difference in perfusion-diffusion mismatch volumes because of penumbral death occurring 5 to 24 hours after permanent middle cerebral artery occlusion in collateral-poor mice. CONCLUSIONS Variation in collateral extent significantly alters infarct volume expansion, transiently affects perfusion and diffusion magnetic resonance imaging signatures, and impacts salvage of ischemic penumbra after stroke onset.
Collapse
Affiliation(s)
- Yu-Chieh Jill Kao
- From the Department of Neurology (Y.-C.J.K., E.A.O.), Biomedical Research Imaging Center (Y.-C.J.K., E.A.O., Y.-Y.I.S.), Neurobiology Curriculum (E.A.O., J.E.F.), Department of Cell Biology and Physiology (H.Z., J.E.F.), McAllister Heart Institute (H.Z., J.E.F., Y.-Y.I.S.), and Department of Biomedical Engineering (Y.-Y.I.S.), University of North Carolina, Chapel Hill; and Translational Imaging Research Center (Y.-C.J.K.) and Department of Radiology, School of Medicine (Y.-C.J.K.), College of Medicine, Taipei Medical University, Taiwan
| | - Esteban A Oyarzabal
- From the Department of Neurology (Y.-C.J.K., E.A.O.), Biomedical Research Imaging Center (Y.-C.J.K., E.A.O., Y.-Y.I.S.), Neurobiology Curriculum (E.A.O., J.E.F.), Department of Cell Biology and Physiology (H.Z., J.E.F.), McAllister Heart Institute (H.Z., J.E.F., Y.-Y.I.S.), and Department of Biomedical Engineering (Y.-Y.I.S.), University of North Carolina, Chapel Hill; and Translational Imaging Research Center (Y.-C.J.K.) and Department of Radiology, School of Medicine (Y.-C.J.K.), College of Medicine, Taipei Medical University, Taiwan
| | - Hua Zhang
- From the Department of Neurology (Y.-C.J.K., E.A.O.), Biomedical Research Imaging Center (Y.-C.J.K., E.A.O., Y.-Y.I.S.), Neurobiology Curriculum (E.A.O., J.E.F.), Department of Cell Biology and Physiology (H.Z., J.E.F.), McAllister Heart Institute (H.Z., J.E.F., Y.-Y.I.S.), and Department of Biomedical Engineering (Y.-Y.I.S.), University of North Carolina, Chapel Hill; and Translational Imaging Research Center (Y.-C.J.K.) and Department of Radiology, School of Medicine (Y.-C.J.K.), College of Medicine, Taipei Medical University, Taiwan
| | - James E Faber
- From the Department of Neurology (Y.-C.J.K., E.A.O.), Biomedical Research Imaging Center (Y.-C.J.K., E.A.O., Y.-Y.I.S.), Neurobiology Curriculum (E.A.O., J.E.F.), Department of Cell Biology and Physiology (H.Z., J.E.F.), McAllister Heart Institute (H.Z., J.E.F., Y.-Y.I.S.), and Department of Biomedical Engineering (Y.-Y.I.S.), University of North Carolina, Chapel Hill; and Translational Imaging Research Center (Y.-C.J.K.) and Department of Radiology, School of Medicine (Y.-C.J.K.), College of Medicine, Taipei Medical University, Taiwan
| | - Yen-Yu Ian Shih
- From the Department of Neurology (Y.-C.J.K., E.A.O.), Biomedical Research Imaging Center (Y.-C.J.K., E.A.O., Y.-Y.I.S.), Neurobiology Curriculum (E.A.O., J.E.F.), Department of Cell Biology and Physiology (H.Z., J.E.F.), McAllister Heart Institute (H.Z., J.E.F., Y.-Y.I.S.), and Department of Biomedical Engineering (Y.-Y.I.S.), University of North Carolina, Chapel Hill; and Translational Imaging Research Center (Y.-C.J.K.) and Department of Radiology, School of Medicine (Y.-C.J.K.), College of Medicine, Taipei Medical University, Taiwan.
| |
Collapse
|