1
|
Lukovic B, Kabic J, Dragicevic M, Kuljanin S, Dimkic I, Jovcic B, Gajic I. Genetic basis of antimicrobial resistance, virulence features and phylogenomics of carbapenem-resistant Acinetobacter baumannii clinical isolates. Infection 2025; 53:39-50. [PMID: 38856809 DOI: 10.1007/s15010-024-02316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE The worldwide emergence and clonal spread of carbapenem-resistant Acinetobacter baumannii (CRAB) is of great concern. In the present study, we determined the mechanisms of antimicrobial resistance, virulence gene repertoire and genomic relatedness of CRAB isolates circulating in Serbian hospitals. METHODS CRAB isolates were analyzed using whole-genome sequencing (WGS) for the presence of antimicrobial resistance-encoding genes, virulence factors-encoding genes, mobile genetic elements and genomic relatedness. Antimicrobial susceptibility testing was done by disk diffusion and broth microdilution methods. RESULTS Eleven isolates exhibited an MDR resistance phenotype, while four of them were XDR. MIC90 for meropenem and imipenem were > 64 µg/mL and 32 µg/mL, respectively. While all CRABs harbored blaOXA-66 variant of blaOXA-51 gene, those assigned to STPas2, STPas636 and STPas492 had blaADC-73,blaADC-74 and blaADC-30 variants, respectively. The following acquired carbapenemases-encoding genes were found: blaOXA-72 (n = 12), blaOXA-23 (n = 3), and blaNDM-1(n = 5), and were mapped to defined mobile genetic elements. MLST analysis assigned the analyzed CRAB isolates to three Pasteur sequence types (STs): STPas2, STPas492, and STPas636. The Majority of strains belonged to International Clone II (ICII) and carried tested virulence-related genes liable for adherence, biofilm formation, iron uptake, heme biosynthesis, zinc utilization, serum resistance, stress adaptation, intracellular survival and toxin activity. CONCLUSION WGS elucidated the resistance and virulence profiles of CRABs isolated from clinical samples in Serbian hospitals and genomic relatedness of CRAB isolates from Serbia and globally distributed CRABs.
Collapse
Affiliation(s)
- Bojana Lukovic
- College of Health Sciences, Academy of Applied Studies Belgrade, Cara Dusana 254, Belgrade, 11080, Serbia.
| | - Jovana Kabic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milan Dragicevic
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Ivica Dimkic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Branko Jovcic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Mathu R, Diago-Navarro E, Lynch E, Degail MA, Ousley J, Kanapathipillai R, Michel J, Gastellu-Etchegorry M, Malou N. Antibiotic resistance in the Middle East and Southern Asia: a systematic review and meta-analysis. JAC Antimicrob Resist 2025; 7:dlaf010. [PMID: 39973906 PMCID: PMC11836886 DOI: 10.1093/jacamr/dlaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/04/2025] [Indexed: 02/21/2025] Open
Abstract
Introduction Despite global surveillance efforts, antibiotic resistance (ABR) is difficult to address in low- and middle-income countries (LMICs). In the absence of country-wide ABR surveillance data, peer-reviewed literature is the next most significant source of publicly available ABR data. Médecins Sans Frontières conducted this review in hopes of using the pooled findings to inform treatment choices in the studied countries where sufficient local ABR data are unavailable. Methods A systematic literature review reporting ABR rates for six infection sites in nine countries in the Middle East and Southern Asia was conducted. PubMed was used to identify literature published between January 2012 and August 2022. A meta-analysis of the included studies (n = 694) was conducted, of which 224 are reviewed in this paper. The JBI critical appraisal tool was used to evaluate risk of bias for included studies. Results This paper focuses on sepsis, burns and wound infections, specifically, with the largest number of papers describing data from Iran, Türkiye and Pakistan. High (>30%) resistance to recommended first-line antibiotics was found. Gram-negative resistance to ceftriaxone, aminoglycosides and carbapenems was high in burn-related infections; colistin resistance among Klebsiella pneumoniae isolates in Pakistan was alarmingly high (81%). Conclusions High-quality data on ABR in LMIC settings remain difficult to obtain. While peer-reviewed literature is a source of publicly available ABR data, it is of inconsistent quality; the field also lacks agreed reporting standards, limiting the capacity to pool findings. Nonetheless, high resistance to first-line antibiotics underscores the need for improved localized surveillance and stewardship.
Collapse
Affiliation(s)
| | - Elizabeth Diago-Navarro
- Médecins Sans Frontières, New York, USA
- Barcelona Institute for Global Health, PR3 Hub, Barcelona, Barcelona, Spain
| | - Emily Lynch
- Department of Intervention Epidemiology and Training, Epicentre, Paris, France
| | - Marie-Amélie Degail
- Department of Intervention Epidemiology and Training, Epicentre, Paris, France
| | | | | | | | | | | |
Collapse
|
3
|
Shaker AA, Samir A, Zaher HM, Abdel-Moein KA. The Burden of Acinetobacter baumannii Among Pet Dogs and Cats with Respiratory Illness Outside the Healthcare Facilities: A Possible Public Health Concern. Vector Borne Zoonotic Dis 2025; 25:118-124. [PMID: 39405054 DOI: 10.1089/vbz.2024.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2025] Open
Abstract
Background: Researchers paid more attention to nosocomial Acinetobacter baumannii in veterinary hospitals worldwide; however, the research scope toward community-acquired A. baumannii infections among animals is largely ignored. Therefore, the current study aimed to investigate the role of diseased dogs and cats suffering from respiratory illness in transmission of community-acquired A. baumannii infection and its public health threat. Materials and methods: Oral swabs were collected from 154 pet animals with respiratory signs, including 80 cats and 74 dogs (outpatient visits). The obtained swabs were cultured on CHROMagar™ MH Orientation media for isolation of A. baumannii, and identification of suspected isolates was conducted via Gram staining, conventional biochemical tests, and molecular detection of the blaOXA-51-like gene. Antimicrobial susceptibility testing of A. baumannii isolates was carried out using the disc diffusion method. Results: Overall, 10 (6.5%) out of 154 diseased pet animals were positive for A. baumannii, where 6 (8.1%) and 4 (5%) dogs and cats were positive, respectively. Multidrug-resistant (MDR) A. baumannii was found in 3.9% of the examined animals. The phylogenetic tree analysis revealed that the obtained sequences from dogs and cats were closely related to human and animal sequences. Conclusion: The occurrence of MDR A. baumannii among dogs and cats suffering from respiratory illness highlights the potential role of pet animals in the dissemination of MDR A. baumannii in the community.
Collapse
Affiliation(s)
- Alaa A Shaker
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Samir
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Hala M Zaher
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Khaled A Abdel-Moein
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Shakib NH, Hashemizadeh Z, Zomorodi AR, Khashei R, Sadeghi Y, Bazargani A. Evaluation of the relatedness between the biofilm-associated genes and antimicrobial resistance among Acinetobacter baumannii isolates in the southwest Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2025; 17:80-91. [PMID: 40330064 PMCID: PMC12049743 DOI: 10.18502/ijm.v17i1.17804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Background and Objectives Increasing antimicrobial resistance among Acinetobacter baumannii (A. baumannii) strains poses a significant challenge, particularly in intensive care units (ICUs) where these bacteria are common causes of hospital infections. Biofilm production is recognized as a key mechanism contributing to this resistance. This study aims to explore the relationship between biofilm production, the presence of biofilm-associated genes, and antibiotic resistance patterns in A. baumannii isolates obtained from ICU patients. Materials and Methods We collected 100 A. baumannii isolates from ICU patients at Nemazee Hospital in Shiraz, Iran. Antimicrobial susceptibility testing (AST) was performed using the Kirby-Bauer disk diffusion method, and biofilm production potential was assessed through the tissue culture plate (TCP) method. Additionally, we investigated eleven biofilm-related genes (ompA, bap, csuE, epsA, bla per-1 , bfmS, pgaB, csgA, fimH, ptk, and kpsMII) in all isolates using polymerase chain reaction (PCR). The REP-PCR technique was utilized to analyze the genetic relatedness of the isolates (Fig. 4). Results All isolates displayed multi-drug resistance, with the highest resistance rates observed against ceftazidime, cefotaxime, and trimethoprim/sulfamethoxazole (100%). Gentamicin and amikacin showed the lowest resistance rates at 70% and 84%, respectively. A total of 98% of the isolates were capable of biofilm production, with 32% categorized as strong biofilm producers. The most frequently detected biofilm-associated genes included csuE (99%), bfmS (98%), ompA (97%), and pgaB (89%). Conclusion Biofilm production significantly contributes to the prevalence of multi-drug resistant A. baumannii strains. It is essential to implement effective antimicrobial stewardship and develop innovative anti-biofilm strategies to address this global health issue.
Collapse
Affiliation(s)
- Nafiseh Hosseinzadeh Shakib
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hashemizadeh
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Khashei
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Yeganeh Sadeghi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdollah Bazargani
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Mottaghiyan Z, Esmaeili D, Ahmadi MH, Niakan. Development of a Multiplex PCR Assay for the Detection of Extended-Spectrum Beta-Lactamase Genes in Acinetobacter Baumannii Isolates in Tehran City, Iran. Indian J Microbiol 2024; 64:910-916. [PMID: 39282189 PMCID: PMC11399529 DOI: 10.1007/s12088-023-01118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/07/2023] [Indexed: 09/18/2024] Open
Abstract
Extended‑spectrum β‑lactamase (ESBL) genes are responsible for creating Multidrug‑resistant and Extensive drug resistance (XDR) patterns in Acinetobacter baumanii isolates, so limit treatment options and increase mortality and morbidity. This study aimed to development of a multiplex PCR assay for the detection of extended-spectrum beta-lactamase genes including bla CTX-M, bla SHV and bla TEM among clinical samples of Acinetobacter baumanii isolates in Tehran, Iran. In present study, 100 clinical Acinetobacter baumannii strains have been gathered from patients in Motahhari hospital in Tehran city, Iran. Antibiotic susceptibility test was conducted by Kirby-Bauer disc diffusion method. To identify ESBL-producing strains, used combined disk test and Multiplex PCR method was used for Simultaneous diagnosis of bla CTX-M, bla SHV, and bla TEM genes. Out of 100 isolates, 93% were ESBL-positive according to the phenotypic test. Most of the isolates were XDR and the highest sensitivity was for colistin. The frequency of bla CTX-M, bla SHV and bla TEM genes was 95, 1, and 2% respectively. The high percentage of antibiotic resistance and high prevalence of the bla CTX-M gene in A. baumannii isolates is a serious threat to the effectiveness of available antibiotics. This study showed Multiplex PCR can be a reliable and sensitive technique for the fast detection of ESBL genes in Acinetobacter baumannii isolates.
Collapse
Affiliation(s)
| | - Davoud Esmaeili
- Baqiyatallah University of Medical Science, Molasadra St., Tehran, Iran
| | | | | |
Collapse
|
6
|
Azimi L, Hasani H, Karimi A, Fahimzad SA, Fallah F, Fatehi S, Armin S, Sadr M. Characterization of genes involved in the iron acquisition system of multidrug-resistant Acinetobacter baumannii. GMS HYGIENE AND INFECTION CONTROL 2024; 19:Doc25. [PMID: 38883402 PMCID: PMC11177110 DOI: 10.3205/dgkh000480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background The high prevalence of virulence-associated genes observed in Acinetobacter baumannii isolates underscores the pathogenic potential of this bacterium. The presence of these genes confers enhanced survival, evasion of host defenses, and increased virulence. In this study, we investigate the presence and distribution of genes associated with virulence and assess the antimicrobial susceptibility patterns in clinical isolates of A. baumannii. Materials and method This research focused on examining the 50 multi-drugs resistant (MDR) strains that were included in this investigation. The identification of these strains was validated using Oxa-51. The presence of the BauA and BasD genes was determined through conventional PCR techniques. Results The results derived from Oxa-51 PCR confirmed the identification of all 50 selected strains of A. baumannii. Additionally, both the BauA and BasD genes were successfully identified in 82% of the MDR strains. Conclusion Moreover, the varying antibiotic resistance patterns highlight the challenge in treating A. baumannii infections effectively. Strategies such as combination therapy, antimicrobial stewardship, and infection control measures should be considered to combat this multidrug-resistant pathogen.
Collapse
Affiliation(s)
- Leila Azimi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Hasani
- Department of Medical Surgical Nursing, Jovein School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abdollah Karimi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Fahimzad
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Fatehi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahnaz Armin
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Sadr
- Department of Pediatrics, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
7
|
Anwer R. Molecular epidemiology and molecular typing methods of Acinetobacter baumannii: An updated review. Saudi Med J 2024; 45:458-467. [PMID: 38734425 PMCID: PMC11147555 DOI: 10.15537/smj.2024.45.5.20230886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024] Open
Abstract
The aim of this study was to go through the molecular methods used for typing of carbapenem-resistant Acientobacter baumannii (CRAB) isolates for investigating the molecular epidemiology all over the world. Multiple typing techniques are required to understand the source and nature of outbreaks caused by Acientobacter baumannii (A. baumannii) and acquired resistance to antimicrobials. Nowadays, there is gradual shift from traditional typing methods to modern molecular methods to study molecular epidemiology and infection control. Molecular typing of A. baumannii strains has been revolutionized significantly in the last 2 decades. A few sequencing-based techniques have been proven as a breakthrough and opened new prospects, which have not been achieved by the traditional methods. In this review, discussed different pre-existing and recently used typing methods to explore the molecular epidemiology of A. baumannii pertaining in context with human infections.
Collapse
Affiliation(s)
- Razique Anwer
- From the Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
8
|
Mishra SK, Baidya S, Bhattarai A, Shrestha S, Homagain S, Rayamajhee B, Hui A, Willcox M. Bacteriology of endotracheal tube biofilms and antibiotic resistance: a systematic review. J Hosp Infect 2024; 147:146-157. [PMID: 38522561 DOI: 10.1016/j.jhin.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
Bacteria commonly adhere to surfaces and produce polymeric material to encase the attached cells to form communities called biofilms. Within these biofilms, bacteria can appear to be many times more resistant to antibiotics or disinfectants. This systematic review explores the prevalence and microbial profile associated with biofilm production of bacteria isolated from endotracheal tubes and its associations with antimicrobial resistance. A comprehensive search was performed on databases PubMed, Embase, and Google Scholar for relevant articles published between 1st January 2000 and 31st December 2022. The relevant articles were exported to Mendeley Desktop 1.19.8 and screened by title and abstract, followed by full text screening based on the eligibility criteria of the study. Quality assessment of the studies was performed using the Newcastle-Ottawa Scale (NOS) customized for cross-sectional studies. Furthermore, the prevalence of antimicrobial resistance in biofilm-producers isolated from endotracheal tube specimens was investigated. Twenty studies encompassing 981 endotracheal tubes met the eligibility criteria. Pseudomonas spp. and Acinetobacter spp. were predominant isolates among the biofilm producers. These biofilms provided strong resistance against commonly used antibiotics. The highest resistance rate observed in Pseudomonas spp. was against fluoroquinolones whereas the least resistance was seen against piperacillin-tazobactam. A similar trend of susceptibility was observed in Acinetobacter spp. with a very high resistance rate against fluoroquinolones, third-generation cephalosporins and carbapenems. In conclusion, endotracheal tubes were associated with colonization by biofilm forming bacteria with varying levels of antimicrobial resistance. Biofilms may promote the occurrence of recalcitrant infections in endotracheal tubes which need to be managed with appropriate protocols and antimicrobial stewardship. Research focus should shift towards meticulous exploration of biofilm-associated infections to improve detection and management.
Collapse
Affiliation(s)
- S K Mishra
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, Australia; Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal.
| | - S Baidya
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - A Bhattarai
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - S Shrestha
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - S Homagain
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - B Rayamajhee
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, Australia
| | - A Hui
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, Australia; Center for Ocular Research and Education, School of Optometry &Vision Science, University of Waterloo, Ontario, Canada
| | - M Willcox
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
9
|
Saleem M, Syed Khaja AS, Hossain A, Alenazi F, Said KB, Moursi SA, Almalaq HA, Mohamed H, Rakha E. Molecular Characterization and Antibiogram of Acinetobacter baumannii Clinical Isolates Recovered from the Patients with Ventilator-Associated Pneumonia. Healthcare (Basel) 2022; 10:2210. [PMID: 36360551 PMCID: PMC9690950 DOI: 10.3390/healthcare10112210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 08/27/2023] Open
Abstract
A 2-year prospective study carried out on ventilator-associated pneumonia (VAP) patients in the intensive care unit at a tertiary care hospital, Hail, Kingdom of Saudi Arabia (KSA), revealed a high prevalence of extremely drug-resistant (XDR) Acinetobacter baumannii. About a 9% increase in the incidence rate of A. baumannii occurred in the VAP patients between 2019 and 2020 (21.4% to 30.7%). In 2019, the isolates were positive for IMP-1 and VIM-2 (31.1% and 25.7%, respectively) as detected by PCR. In comparison, a higher proportion of isolates produced NDM-1 in 2020. Here, we observed a high proportion of resistant ICU isolates towards the most common antibiotics in use. Colistin sensitivity dropped to 91.4% in the year 2020 as compared to 2019 (100%). Thus, the finding of this study has a highly significant clinical implementation in the clinical management strategies for VAP patients. Furthermore, strict implementation of antibiotic stewardship policies, regular surveillance programs for antimicrobial resistance monitoring, and screening for genes encoding drug resistance phenotypes have become imperative.
Collapse
Affiliation(s)
- Mohd Saleem
- Department of Pathology, College of Medicine, University of Hail, Hail 55476, Saudi Arabia
| | | | - Ashfaque Hossain
- Department of Medical Microbiology and Immunology, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Fahaad Alenazi
- Department of Pharmacology, College of Medicine, University of Hail, Hail 55476, Saudi Arabia
| | - Kamaleldin B. Said
- Department of Pathology, College of Medicine, University of Hail, Hail 55476, Saudi Arabia
| | - Soha Abdallah Moursi
- Department of Pathology, College of Medicine, University of Hail, Hail 55476, Saudi Arabia
| | - Homoud Abdulmohsin Almalaq
- Hail Health Cluster, King Khalid Hospital, College of Pharmacy, King Saud University, Riyadh 55421, Saudi Arabia
| | - Hamza Mohamed
- Department of Anatomy, College of Medicine, University of Hail, Hail 55476, Saudi Arabia
| | - Ehab Rakha
- Laboratory Department, King Khalid Hospital, Hail 55421, Saudi Arabia
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 7650030, Egypt
| |
Collapse
|
10
|
Soontarach R, Nwabor OF, Voravuthikunchai SP. Interaction of lytic phage T1245 with antibiotics for enhancement of antibacterial and anti-biofilm efficacy against multidrug-resistant Acinetobacter baumannii. BIOFOULING 2022; 38:994-1005. [PMID: 36606321 DOI: 10.1080/08927014.2022.2163479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Biofilms associated with multidrug-resistant (MDR) Acinetobacter baumannii on medical devices remain a big clinical problem. Antibiotic susceptibility tests were performed with eight commonly employed antibiotics against clinical isolates. The effects of antibiotics in combination with well-characterized lytic phage T1245 were studied to assess their antibacterial and anti-biofilm efficacy. Ceftazidime, colistin, imipenem, and meropenem significantly reduced bacterial density up to approximately 80% when combined with phage T1245, compared with control. Phage T1245 in combination with ceftazidime, colistin, and meropenem at subinhibitory concentrations demonstrated significant reduction in biomass and bacterial viability of 3-day established biofilms, compared with antibiotic alone. In addition, electron microscopy further confirmed the disruption of biofilm structure and cell morphology upon treatment with phage T1245 and antibiotics, including ceftazidime, colistin, and meropenem. Combined treatment of phage T1245 with these antibiotics could be employed for the management of A. baumannii infections and eradication of the bacterial biofilms.
Collapse
Affiliation(s)
- Rosesathorn Soontarach
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Songkhla, Thailand
| | - Ozioma Forstinus Nwabor
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
11
|
Roy S, Chowdhury G, Mukhopadhyay AK, Dutta S, Basu S. Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Infection. Front Med (Lausanne) 2022; 9:793615. [PMID: 35402433 PMCID: PMC8987773 DOI: 10.3389/fmed.2022.793615] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/31/2022] [Indexed: 07/30/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a leading cause of nosocomial infections as this pathogen has certain attributes that facilitate the subversion of natural defenses of the human body. A. baumannii acquires antibiotic resistance determinants easily and can thrive on both biotic and abiotic surfaces. Different resistance mechanisms or determinants, both transmissible and non-transmissible, have aided in this victory over antibiotics. In addition, the propensity to form biofilms (communities of organism attached to a surface) allows the organism to persist in hospitals on various medical surfaces (cardiac valves, artificial joints, catheters, endotracheal tubes, and ventilators) and also evade antibiotics simply by shielding the bacteria and increasing its ability to acquire foreign genetic material through lateral gene transfer. The biofilm formation rate in A. baumannii is higher than in other species. Recent research has shown how A. baumannii biofilm-forming capacity exerts its effect on resistance phenotypes, development of resistome, and dissemination of resistance genes within biofilms by conjugation or transformation, thereby making biofilm a hotspot for genetic exchange. Various genes control the formation of A. baumannii biofilms and a beneficial relationship between biofilm formation and "antimicrobial resistance" (AMR) exists in the organism. This review discusses these various attributes of the organism that act independently or synergistically to cause hospital infections. Evolution of AMR in A. baumannii, resistance mechanisms including both transmissible (hydrolyzing enzymes) and non-transmissible (efflux pumps and chromosomal mutations) are presented. Intrinsic factors [biofilm-associated protein, outer membrane protein A, chaperon-usher pilus, iron uptake mechanism, poly-β-(1, 6)-N-acetyl glucosamine, BfmS/BfmR two-component system, PER-1, quorum sensing] involved in biofilm production, extrinsic factors (surface property, growth temperature, growth medium) associated with the process, the impact of biofilms on high antimicrobial tolerance and regulation of the process, gene transfer within the biofilm, are elaborated. The infections associated with colonization of A. baumannii on medical devices are discussed. Each important device-related infection is dealt with and both adult and pediatric studies are separately mentioned. Furthermore, the strategies of preventing A. baumannii biofilms with antibiotic combinations, quorum sensing quenchers, natural products, efflux pump inhibitors, antimicrobial peptides, nanoparticles, and phage therapy are enumerated.
Collapse
Affiliation(s)
- Subhasree Roy
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Molecular Microbiology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Molecular Microbiology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sulagna Basu
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
12
|
Darvishi S, Tavakoli S, Kharaziha M, Girault HH, Kaminski CF, Mela I. Advances in the Sensing and Treatment of Wound Biofilms. Angew Chem Int Ed Engl 2022; 61:e202112218. [PMID: 34806284 PMCID: PMC9303468 DOI: 10.1002/anie.202112218] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/02/2022]
Abstract
Wound biofilms represent a particularly challenging problem in modern medicine. They are increasingly antibiotic resistant and can prevent the healing of chronic wounds. However, current treatment and diagnostic options are hampered by the complexity of the biofilm environment. In this review, we present new chemical avenues in biofilm sensors and new materials to treat wound biofilms, offering promise for better detection, chemical specificity, and biocompatibility. We briefly discuss existing methods for biofilm detection and focus on novel, sensor-based approaches that show promise for early, accurate detection of biofilm formation on wound sites and that can be translated to point-of-care settings. We then discuss technologies inspired by new materials for efficient biofilm eradication. We focus on ultrasound-induced microbubbles and nanomaterials that can both penetrate the biofilm and simultaneously carry active antimicrobials and discuss the benefits of those approaches in comparison to conventional methods.
Collapse
Affiliation(s)
- Sorour Darvishi
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
- Department of Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de Lausanne1951SionSwitzerland
| | - Shima Tavakoli
- Department of Chemistry-Ångstrom LaboratoryUppsala UniversitySE75121UppsalaSweden
| | - Mahshid Kharaziha
- Department of Materials EngineeringIsfahan University of TechnologyIsfahan84156-83111Iran
| | - Hubert H. Girault
- Department of Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de Lausanne1951SionSwitzerland
| | - Clemens F. Kaminski
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Ioanna Mela
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| |
Collapse
|
13
|
Darvishi S, Tavakoli S, Kharaziha M, Girault HH, Kaminski CF, Mela I. Advances in the Sensing and Treatment of Wound Biofilms. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202112218. [PMID: 38505642 PMCID: PMC10946914 DOI: 10.1002/ange.202112218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 03/21/2024]
Abstract
Wound biofilms represent a particularly challenging problem in modern medicine. They are increasingly antibiotic resistant and can prevent the healing of chronic wounds. However, current treatment and diagnostic options are hampered by the complexity of the biofilm environment. In this review, we present new chemical avenues in biofilm sensors and new materials to treat wound biofilms, offering promise for better detection, chemical specificity, and biocompatibility. We briefly discuss existing methods for biofilm detection and focus on novel, sensor-based approaches that show promise for early, accurate detection of biofilm formation on wound sites and that can be translated to point-of-care settings. We then discuss technologies inspired by new materials for efficient biofilm eradication. We focus on ultrasound-induced microbubbles and nanomaterials that can both penetrate the biofilm and simultaneously carry active antimicrobials and discuss the benefits of those approaches in comparison to conventional methods.
Collapse
Affiliation(s)
- Sorour Darvishi
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
- Department of Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de Lausanne1951SionSwitzerland
| | - Shima Tavakoli
- Department of Chemistry-Ångstrom LaboratoryUppsala UniversitySE75121UppsalaSweden
| | - Mahshid Kharaziha
- Department of Materials EngineeringIsfahan University of TechnologyIsfahan84156-83111Iran
| | - Hubert H. Girault
- Department of Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de Lausanne1951SionSwitzerland
| | - Clemens F. Kaminski
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Ioanna Mela
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| |
Collapse
|
14
|
Mazloomirad F, Hasanzadeh S, Sharifi A, Nikbakht G, Roustaei N, Khoramrooz SS. Identification and detection of pathogenic bacteria from patients with hospital-acquired pneumonia in southwestern Iran; evaluation of biofilm production and molecular typing of bacterial isolates. BMC Pulm Med 2021; 21:408. [PMID: 34886838 PMCID: PMC8662843 DOI: 10.1186/s12890-021-01773-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/29/2021] [Indexed: 12/01/2022] Open
Abstract
Background Hospital-acquired pneumonia (HAP) is the second most common nosocomial infection in intensive care units (ICUs). The present study aims to determine the prevalence of pathogenic bacteria, their biofilm formation, and molecular typing from patients with HAP in southwestern Iran. Methods Fifty-eight patients with HAP participated in this cross-sectional study. Sputum and endotracheal aspirate were collected from each patient for isolation and detection of bacteria. Biofilm formation was evaluated using Congo red agar or Microtiter plate assay. The antimicrobial susceptibility patterns of the isolates were investigated. The multiplex polymerase chain reaction (M-PCR) technique was used to determine the Staphylococcal Cassette Chromosome mec (SCCmec) types of methicillin-resistant Staphylococcus aureus (MRSA) strains. All S. aureus isolates were typed using the agr typing method. A repetitive element sequence-based PCR (rep-PCR) typing method was used for typing of Gram-negative bacteria. Data were analyzed using the Statistical Package for the Social Sciences (SPSS) software version 15 and the chi-square test. Results Bacteria were isolated in 52 (89.7%) of patients. Acinetobacter baumannii (A. baumannii) was the most prevalent organism (37%), followed by S. aureus, Pseudomonas aeruginosa (P. aeruginosa), and Escherichia coli (E. coli). Using the PCR method, 56 bacteria were detected. A. baumannii was the most prevalent (35.7%) organism. A. baumannii and P. aeruginosa were biofilm-producing. All Gram-negative isolates were colistin-sensitive, and most of the A. baumannii isolates were multidrug-resistant (MDR). MRSA was identified in 12 (80%) S. aureus isolates, and 91.6% of MRSA were SCCmec type III. The agr type III was the most predominant. The rep-PCR analysis showed seven different patterns in 20 A. baumannii, six patterns in 13 P. aeruginosa, and four patterns in 6 E. coli. Conclusion A. baumannii was more prevalent than S. aureus in ventilator-associated pneumonia (VAP), while S. aureus is a major pathogen in non-ventilator hospital-acquired pneumonia (NV-HAP), possibly due to the tendency of the former to aquatic environments. Based on the rep-PCR typing method, it was concluded that bacteria were transmitted from patients or healthcare workers among different wards. Colistin can be used as a treatment in Gram-negative MDR isolates.
Collapse
Affiliation(s)
- Farzad Mazloomirad
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sajad Hasanzadeh
- Department of Internal Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Asghar Sharifi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Gordafarin Nikbakht
- Department of Infectious Diseases, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Narges Roustaei
- Department of Epidemiology and Biostatistics, School of Health and Nutrition Sciences, Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Seyed Sajjad Khoramrooz
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran. .,Department of Microbiology, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
15
|
Pompilio A, Scribano D, Sarshar M, Di Bonaventura G, Palamara AT, Ambrosi C. Gram-Negative Bacteria Holding Together in a Biofilm: The Acinetobacter baumannii Way. Microorganisms 2021; 9:1353. [PMID: 34206680 PMCID: PMC8304980 DOI: 10.3390/microorganisms9071353] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Bacterial biofilms are a serious public-health problem worldwide. In recent years, the rates of antibiotic-resistant Gram-negative bacteria associated with biofilm-forming activity have increased worrisomely, particularly among healthcare-associated pathogens. Acinetobacter baumannii is a critically opportunistic pathogen, due to the high rates of antibiotic resistant strains causing healthcare-acquired infections (HAIs). The clinical isolates of A. baumannii can form biofilms on both biotic and abiotic surfaces; hospital settings and medical devices are the ideal environments for A. baumannii biofilms, thereby representing the main source of patient infections. However, the paucity of therapeutic options poses major concerns for human health infections caused by A. baumannii strains. The increasing number of multidrug-resistant A. baumannii biofilm-forming isolates in association with the limited number of biofilm-eradicating treatments intensify the need for effective antibiofilm approaches. This review discusses the mechanisms used by this opportunistic pathogen to form biofilms, describes their clinical impact, and summarizes the current and emerging treatment options available, both to prevent their formation and to disrupt preformed A. baumannii biofilms.
Collapse
Affiliation(s)
- Arianna Pompilio
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, Service of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (G.D.B.)
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
- Dani Di Giò Foundation-Onlus, 00193 Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Giovanni Di Bonaventura
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, Service of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (G.D.B.)
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy;
- Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS, 00166 Rome, Italy
| |
Collapse
|
16
|
Antibiogram, Prevalence of OXA Carbapenemase Encoding Genes, and RAPD-Genotyping of Multidrug-Resistant Acinetobacter baumannii Incriminated in Hidden Community-Acquired Infections. Antibiotics (Basel) 2020; 9:antibiotics9090603. [PMID: 32942596 PMCID: PMC7558960 DOI: 10.3390/antibiotics9090603] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 12/16/2022] Open
Abstract
Acinetobacter spp. has gained fame from their ability to resist difficult conditions and their constant development of antimicrobial resistance. This study aimed to investigate the prevalence, susceptibility testing, OXA carbapenemase-encoding genes, and RAPD-genotyping of multidrug resistant Acinetobacter baumannii incriminated in hidden community-acquired infections in Egypt. The antimicrobial susceptibility testing was assessed phenotypically using Kirby–Bauer disk diffusion method. Also, Modified-Hodge test (MHT) was carried out to detect the carbapenemases production. Multiplex-PCR was used to detect the carbapenemase-encoding genes. Furthermore, the genetic relationship among the isolated strains was investigated using RAPD fingerprinting. The bacteriological examination revealed that, out of 200 Gram-negative non-fermentative isolates, 44 (22%) were identified phenotypically and biochemically as Acinetobacter spp. and 23 (11.5%) were molecularly confirmed as A.baumannii. The retrieved A.baumannii strains were isolated from urine (69%), sputum (22%), and cerebrospinal fluid (csf) (9%). The isolated A. baumannii strains exhibited multidrug resistance and the production rates of carbapenemases were 56.5, 60.9, and 78.3% with meropenem, imipenem, and ertapenem disks, respectively. The blaOXA-24-like genes were the most predominant among the tested strains (65.2%), followed by blaOXA-23 (30.4%) and blaOXA-58 (17.4%), in addition, the examined strains are harbored IMP, VIM, and NDM genes with prevalence of 60.9, 43.5, and 13%, respectively, while KPC and GES genes were not detected. RAPD-PCR revealed that the examined strains are clustered into 11 different genotypes at ≥90% similarity. Briefly, to the best of our knowledge, this study is the first report concerning community-associated A. baumannii infections in Egypt. The high prevalence of hidden multidrug-resistant (MDR) and extensively drug-resistant (XDR) A.baumannii strains associated with non-hospitalized patients raises an alarm for healthcare authorities to set strict standards to control the spread of such pathogens with high rates of morbidity and mortality.
Collapse
|
17
|
Biofilm-Formation in Clonally Unrelated Multidrug-Resistant Acinetobacter baumannii Isolates. Pathogens 2020; 9:pathogens9080630. [PMID: 32748817 PMCID: PMC7460364 DOI: 10.3390/pathogens9080630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022] Open
Abstract
This study analyzed the genotype, antibiotic resistance, and biofilm formation of Acinetobacter baumannii strains and assessed the correlation between biofilm formation, antibiotic resistance, and biofilm-related risk factors. A total of 207 non-replicate multi-drug-resistant A. baumannii strains were prospectively isolated. Phenotypic identification and antimicrobial susceptibility testing were carried out. Isolate biofilm formation ability was evaluated using the tissue culture plate (TCP), Congo red agar, and tube methods. Clonal relatedness between the strains was assessed by enterobacterial repetitive intergenic consensus-PCR genotyping. Of the 207 isolates, 52.5% originated from an intensive care unit setting, and pan resistance was observed against ceftazidime and cefepime, with elevated resistance (99–94%) to piperacillin/tazobactam, imipenem, levofloxacin, and ciprofloxacin. alongside high susceptibility to tigecycline (97.8%). The Tissue culture plate, Tube method, and Congo red agar methods revealed that 53.6%, 20.8%, and 2.7% of the strains were strong biofilm producers, respectively, while a significant correlation was observed between biofilm formation and device-originating respiratory isolates (p = 0.0009) and between biofilm formation in colonized vs. true infection isolates (p = 0.0001). No correlation was detected between antibiotic resistance and biofilm formation capacity, and the majority of isolates were clonally unrelated. These findings highlight the urgent need for implementing strict infection control measures in clinical settings.
Collapse
|