1
|
Sukardiman, Mutiah R, Handayani R. Potential and mechanisms of indigenous Indonesian medicinal plants in treating sexual dysfunction: A systematic review and pharmacological network overview. Heliyon 2025; 11:e42501. [PMID: 40007786 PMCID: PMC11850192 DOI: 10.1016/j.heliyon.2025.e42501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The epidemiology of Erectile Dysfunction (ED) continues to exhibit an increasing trend annually. The use of synthetic drugs in treating ED often leads to undesirable side effects and has limited efficacy. In Indonesia, several indigenous plants have been empirically utilized for ED remediation. This study aims to identify the latest scientific evidence on the potential of native Indonesian medicinal plants for ED treatment and elucidate the underlying molecular mechanisms using a systematic review and Pharmacological Network approach. There are 12 potential plants most commonly used by ethnic groups in Indonesia to treat erectile dysfunction (ED) as reviewed in this study. A systematic review search was conducted across three databases (PubMed, Scopus, and Springer) without limiting the publication years. Article screening was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart. Determination of compound target genes was carried out using GeneCards, while disease target genes were analyzed using DisGeNET. Network topology was explored with Cytoscape 3.10, and the construction of Protein-Protein Interaction Networks was realized using STRING version 12.0. GO and KEGG analyses were subsequently conducted with SRplot. The systematic review findings indicated that 12 articles met the predefined inclusion criteria. The pharmacology network analysis demonstrated that the compounds present in Eurycoma longifolia, specifically stigmasterol, eurycomanone, and eurycomalactone, target 13 genes associated with erectile dysfunction (ED), which include BCL2, AKT1, SOAT1, PCSK9, ACHE, BDNF-AS, TMX2-CTNND1, GSK3B, LINCO1672, TP53, H19, HIF1A, and IL1B. These target genes are connected to the biological mechanisms underlying steroid hormone biosynthesis, which is essential for the formation of testosterone. Therefore, Eurycoma longifolia demonstrates significant potential for development as a promising phytopharmaceutical candidate in the treatment of sexual dysfunction.
Collapse
Affiliation(s)
- Sukardiman
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Roihatul Mutiah
- Department of Pharmacy, Faculty of Medicine and Health Sciences, UIN Maulana Malik Ibrahim Malang 65144, Indonesia
| | - Rosita Handayani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
2
|
Adeyemi D, Arokoyo D, Hamed M, Dare A, Oyedokun P, Akhigbe R. Cardiometabolic Disorder and Erectile Dysfunction. Cell Biochem Biophys 2024; 82:1751-1762. [PMID: 38907942 DOI: 10.1007/s12013-024-01361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Erectile dysfunction (ED), which is defined as the inability to attain and maintain a satisfactory penile erection to sufficiently permit sexual intercourse, is a consequence and also a cause of cardiometabolic disorders like diabetes mellitus, systemic hypertension, central obesity, and dyslipidemia. Although there are mounting and convincing pieces of evidence in the literature linking ED and cardiometabolic disorders, impairment of nitric oxide-dependent vasodilatation seems to be the primary signaling pathway. Studies have also implicated the suppression of circulating testosterone, increased endothelin-1, and hyperactivation of Ang II/ATIr in the pathogenesis of ED and cardiometabolic disorders. This study provides comprehensive details of the association between cardiometabolic disorders and ED and highlights the mechanisms involved. This would open areas to be explored as therapeutic targets in the management of ED and cardiometabolic disorders. It also provides sufficient evidence establishing the need for the management of cardiometabolic disorders as an adjunct therapy in the management of ED.
Collapse
Affiliation(s)
- Damilare Adeyemi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria
| | - Dennis Arokoyo
- Department of Physiology, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Moses Hamed
- Department of Medical Laboratory Sciences, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratories, Osogbo, Osun State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Ayobami Dare
- School of Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Precious Oyedokun
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Roland Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| |
Collapse
|
3
|
Chaingam J, Choonong R, Juengwatanatrakul T, Kanchanapoom T, Putalun W, Yusakul G. Evaluation of anti-inflammatory properties of Eurycoma longifolia Jack and Eurycoma harmandiana Pierre in vitro cultures and their constituents. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Jiranan Chaingam
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
- Biomass and Oil Palm Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
4
|
Effect of Anti-Hypertensive Medication on Plasma Concentrations of Lysyl Oxidase: Evidence for Aldosterone-IL-6-Dependent Regulation of Lysyl Oxidase Blood Concentration. Biomedicines 2022; 10:biomedicines10071748. [PMID: 35885053 PMCID: PMC9313098 DOI: 10.3390/biomedicines10071748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
Lysyl oxidase (LOX) is a secretory protein that catalyzes elastin and collagen cross-linking. Lowering LOX expression and activity in endothelial cells is associated with a high risk of aneurysms and vascular malformation. Interleukin-6 (IL-6), elevated in hypertension, is known to suppress LOX expression. The influence of anti-hypertensive medication on the plasma LOX concentration is currently unknown. In a cohort of 34 patients diagnosed with resistant hypertension and treated with up to nine different drugs, blood concentration of LOX was analyzed to identify drugs that have an impact on plasma LOX concentration. Key findings were confirmed in a second independent patient cohort of 37 patients diagnosed with dilated cardiomyopathy. Blood concentrations of aldosterone and IL-6 were analyzed. In vitro, the effect of IL-6 on LOX expression was analyzed in endothelial cells. Patients receiving aldosterone antagonists had the highest plasma LOX concentration in both cohorts. This effect was independent of sex, age, blood pressure, body mass index, and co-medication. Blood aldosterone concentration correlates with plasma IL-6 concentration. In vitro, IL-6 decreased the expression of LOX in endothelial cells but not fibroblasts. Aldosterone was identified as a factor that affects blood concentration of LOX in an IL-6-dependent manner.
Collapse
|
5
|
de Oliveira AA, Nunes KP. Hypertension and Erectile Dysfunction: Breaking Down the Challenges. Am J Hypertens 2021; 34:134-142. [PMID: 32866225 DOI: 10.1093/ajh/hpaa143] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/15/2020] [Accepted: 08/29/2020] [Indexed: 02/07/2023] Open
Abstract
A diagnostic of hypertension increases the risk of erectile dysfunction (ED); likewise, ED can be an early sign of hypertension. In both cases, there is evidence that endothelial dysfunction is a common link between the 2 conditions. During hypertension, the sustained and widespread release of procontractile factors (e.g., angiotensin II, endothelin 1, and aldosterone) impairs the balance between vasoconstrictors and vasodilators and, in turn, detrimentally impacts vascular and erectile structures. This prohypertensive state associates with an enhancement in the generation of reactive oxygen species, which is not compensated by internal antioxidant mechanisms. Recently, the innate immune system, mainly via Toll-like receptor 4, has also been shown to actively contribute to the pathophysiology of hypertension and ED not only by inducing oxidative stress but also by sustaining a low-grade inflammatory state. Furthermore, some drugs used to treat hypertension can cause ED and, consequently, reduce compliance with the prescribed pharmacotherapy. To break down these challenges, in this review, we focus on discussing the well-established as well as the emerging mechanisms linking hypertension and ED with an emphasis on the signaling network of the vasculature and corpora cavernosa, the vascular-like structure of the penis.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| |
Collapse
|
6
|
Kaya-Sezginer E, Gur S. The Inflammation Network in the Pathogenesis of Erectile Dysfunction: Attractive Potential Therapeutic Targets. Curr Pharm Des 2021; 26:3955-3972. [PMID: 32329680 DOI: 10.2174/1381612826666200424161018] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/17/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Erectile dysfunction (ED) is an evolving health problem in the aging male population. Chronic low-grade inflammation is a critical component of ED pathogenesis and a probable intermediate stage of endothelial dysfunction, especially in metabolic diseases, with the inclusion of obesity, metabolic syndrome, and diabetes. OBJECTIVE This review will present an overview of preclinical and clinical data regarding common inflammatory mechanisms involved in the pathogenesis of ED associated with metabolic diseases and the effect of antiinflammatory drugs on ED. METHODS A literature search of existing pre-clinical and clinical studies was performed on databases [Pubmed (MEDLINE), Scopus, and Embase] from January 2000 to October 2019. RESULTS Low-grade inflammation is a possible pathological role in endothelial dysfunction as a consequence of ED and other related metabolic diseases. Increased inflammation and endothelial/prothrombotic markers can be associated with the presence and degree of ED. Pharmacological therapy and modification of lifestyle and risk factors may have a significant role in the recovery of erectile response through reduction of inflammatory marker levels. CONCLUSION Inflammation is the least common denominator in the pathology of ED and metabolic disorders. The inflammatory process of ED includes a shift in the complex interactions of cytokines, chemokines, and adhesion molecules. These data have established that anti-inflammatory agents could be used as a therapeutic opportunity in the prevention and treatment of ED. Further research on inflammation-related mechanisms underlying ED and the effect of therapeutic strategies aimed at reducing inflammation is required for a better understanding of the pathogenesis and successful management of ED.
Collapse
Affiliation(s)
- Ecem Kaya-Sezginer
- Department of Biochemistry and Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Serap Gur
- Department of Biochemistry and Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
7
|
Fais RS, Rodrigues FL, Pereira CA, Mendes AC, Mestriner F, Tostes RC, Carneiro FS. The inflammasome NLRP3 plays a dual role on mouse corpora cavernosa relaxation. Sci Rep 2019; 9:16224. [PMID: 31700106 PMCID: PMC6838322 DOI: 10.1038/s41598-019-52831-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/18/2019] [Indexed: 12/25/2022] Open
Abstract
NLRP3 plays a role in vascular diseases. Corpora cavernosa (CC) is an extension of the vasculature. We hypothesize that NLRP3 plays a deleterious role in CC relaxation. Male C57BL/6 (WT) and NLRP3 deficient (NLRP3−/−) mice were used. Intracavernosal pressure (ICP/MAP) measurement was performed. Functional responses were obtained from CC strips of WT and NLRP3−/− mice before and after MCC950 (NLRP3 inhibitor) or LPS + ATP (NLRP3 stimulation). NLRP3, caspase-1, IL-1β, eNOS, nNOS, guanylyl cyclase-β1 (GCβ1) and PKG1 protein expressions were determined. ICP/MAP and sodium nitroprusside (SNP)-induced relaxation in CC were decreased in NLRP3−/− mice. Caspase-1, IL-1β and eNOS activity were increased, but PKG1 was reduced in CC of NLRP3−/−. MCC950 decreased non-adrenergic non-cholinergic (NANC), acetylcholine (ACh), and SNP-induced relaxation in WT mice. MCC950 did not alter NLRP3, caspase-1 and IL-1β, but reduced GCβ1 expression. Although LPS + ATP decreased ACh- and SNP-, it increased NANC-induced relaxation in CC from WT, but not from NLRP3−/− mice. LPS + ATP increased NLRP3, caspase-1 and interleukin-1β (IL-1β). Conversely, it reduced eNOS activity and GCβ1 expression. NLRP3 plays a dual role in CC relaxation, with its inhibition leading to impairment of nitric oxide-mediated relaxation, while its activation by LPS + ATP causes decreased CC sensitivity to NO and endothelium-dependent relaxation.
Collapse
Affiliation(s)
- Rafael S Fais
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernanda L Rodrigues
- Departments of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Camila A Pereira
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Allan C Mendes
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabíola Mestriner
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Rita C Tostes
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernando S Carneiro
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
8
|
Wu F, Lin Y, Liu Q. The emerging role of aldosterone/mineralocorticoid receptors in the pathogenesis of erectile dysfunction. Endocrine 2018; 61:372-382. [PMID: 29721801 DOI: 10.1007/s12020-018-1610-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/17/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE Aldosterone is an old hormone that has been discovered for more than fifty years. The clinical application of its receptors' inhibitors, especially spirolactone, has benifited patients for decades worldwide. In this review, we briefly summarized the molecular mechanism of aldosterone/mineralocorticoid receptors (Ald-MRs) signaling in cardiovascular diseases and its emerging role in erectile dysfunction. METHODS We searched PubMed, Web of Science, and Scopus for manuscripts published prior to December 2017 using key words " aldosterone " AND " erectile dysfunction " OR " cardiovascular disease " OR " mineralocorticoid receptors ". Related literature and clinical perspectives were collated, summarized and discussed in this review. RESULTS The increase of reactive oxygen species production, inhibition of endothelial nitric oxide synthase system, and induction of inflammation are ubiquitous in vascular endothelial cells or vascular smooth muscle cells after the activation of Ald-MRs pathway. In addition, in cardiovascular diseases with over-active Ald-MRs signaling, MRs blockade could reverse the injury and improve the prognosis. Notably, multiple studies have correlated aldosterone and MRs to the pathogenesis of erectile function, while the mechanism is largely unperfectly identified. CONCLUSION In conclusion, we summarize the current evidence to highlight the potential role of aldosterone in erectile dysfunction and provide critical insights into the treatment of the disease.
Collapse
Affiliation(s)
- Fei Wu
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, China.
| | - Yun Lin
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, China
| | - Qingyong Liu
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, China.
| |
Collapse
|