1
|
Soldado F, López de Jesús M, Beitia M, González-Burguera I, Ocerin G, Elejaga-Jimeno A, Saumell-Esnaola M, Barrondo S, Oraa J, Sallés J, Delgado D, García Del Caño G, Sánchez M. Effects of intramuscular administration of Platelet-Rich Plasma on denervated muscle after peripheral nerve injury. Connect Tissue Res 2025; 66:10-25. [PMID: 39729391 DOI: 10.1080/03008207.2024.2446888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE After peripheral nerve injury (PNI), prolonged denervation of the target muscle prevents adequate reinnervation even if the nerve is repaired. The aim of this work is to analyze the effect of intramuscular Platelet-Rich Plasma (PRP) in a denervated muscle due to PNI.Materials and. METHODS An irreversible PNI was generated in the common peroneal nerve of 80 Wistar rats by nerve resection. Animals were divided into groups: non-treatment (NT), saline (S) and PRP (PRP). 200 uL of saline (S group) and PRP (PRP group) were infiltrated intramuscularly into the tibialis anterior muscle on a weekly basis, from surgery to sacrifice (at 2, 4 and 7 weeks). Muscles were histologically processed for immunofluorescence and Western blotting. Effects on nicotinic acetylcholine receptor (nAChR), satellite cells (SC) and myogenin expression were analyzed. Comparisons were performed by two-way analysis of variance (ANOVA). RESULTS PRP had a platelet concentration 1.5-fold higher than blood, without erythrocytes and leukocytes. The PRP group had a higher percentage weight than the S and NT groups (p < 0.05). The levels of nAChRα1 and nAChRε subunit were lower in the PRP group relative to the NT and S (p < 0.05), while the nAChRγ subunit showed an increase in the PRP group (p < 0.05). The activation of SCs was higher in the PRP group compared to NT and S groups (p < 0.05). CONCLUSION PRP treatment can modulate NMJ configuration as well as key myogenic regulatory factors in denervated muscle, enhancing SC activation while mitigating muscle atrophy.
Collapse
Affiliation(s)
- Francisco Soldado
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Maider López de Jesús
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba, Cellular and Molecular Neuropharmacology, Vitoria-Gasteiz, Spain
| | - Maider Beitia
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Imanol González-Burguera
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Garazi Ocerin
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Ainhoa Elejaga-Jimeno
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Miquel Saumell-Esnaola
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba, Cellular and Molecular Neuropharmacology, Vitoria-Gasteiz, Spain
| | - Sergio Barrondo
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Jaime Oraa
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Diego Delgado
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Gontzal García Del Caño
- Bioaraba, Cellular and Molecular Neuropharmacology, Vitoria-Gasteiz, Spain
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Mikel Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| |
Collapse
|
2
|
Bidirectional myofiber transition through altering the photobiomodulation condition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 212:112041. [PMID: 33002778 DOI: 10.1016/j.jphotobiol.2020.112041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 08/09/2020] [Accepted: 09/22/2020] [Indexed: 11/20/2022]
Abstract
Despite remarkable advancements in modern medicine, muscular atrophy remains as an unsolved problem. It is well known that pathological characteristics of different atrophy types could vary according to the pathophysiological causes. In fact, the lesion of atrophy is not always homogenously distributed but often predominantly evident in either fast or slow myofibers. As the focalization of the atrophic lesions, the existence and the functional impairment of each fast and slow progenitor/satellite cell (SC) are suspected though there are still controversies about this hypothesis. In this study, we isolated Pax7 positive (Pax7+ve) SCs from the tibia anterior (fast) and soleus (slow) muscles respectively and successfully demonstrated, for the first time, the difference between optimal exposure durations of photobiomodulation (PBM) which was known as low level laser irradiation (LLLI) in promoting proliferation of Pax7+ve SC which were acquired from fast and slow muscles respectively. Moreover, a hypertrophy-accompanied bidirectional change in myofiber composition with neuromuscular junction alteration, either from slow to fast or fast to slow, were achieved by applying different PBM durations. Simultaneously, PBM exhibited a synergistic effect with muscle exercise on the increase in myofiber size. Our data suggested the existence of at least two different populations of Pax7+ve SC which possess distinct sensitivities towards PBM. As our data revealed the capability of PBM in bidirectional changes of skeletal muscle composition and neuromuscular junction constitution thereby strengthen its contractility through altering the irradiation condition, we believe PBM showed the potential to be as a promising clinical treatment for muscular atrophy.
Collapse
|