1
|
Gharios M, El-Hajj VG, Frisk H, Ohlsson M, Omar A, Edström E, Elmi-Terander A. The use of hybrid operating rooms in neurosurgery, advantages, disadvantages, and future perspectives: a systematic review. Acta Neurochir (Wien) 2023; 165:2343-2358. [PMID: 37584860 PMCID: PMC10477240 DOI: 10.1007/s00701-023-05756-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Hybrid operating rooms (hybrid-ORs) combine the functionalities of a conventional surgical theater with the advanced imaging technologies of a radiological suite. Hybrid-ORs are usually equipped with CBCT devices providing both 2D and 3D imaging capability that can be used for both interventional radiology and image guided surgical applications. Across all fields of surgery, the use of hybrid-ORs is gaining in traction, and neurosurgery is no exception. We hence aimed to comprehensively review the use of hybrid-ORs, the associated advantages, and disadvantages specific to the field of neurosurgery. MATERIALS AND METHODS Electronic databases were searched for all studies on hybrid-ORs from inception to May 2022. Findings of matching studies were pooled to strengthen the current body of evidence. RESULTS Seventy-four studies were included in this review. Hybrid-ORs were mainly used in endovascular surgery (n = 41) and spine surgery (n = 33). Navigation systems were the most common additional technology employed along with the CBCT systems in the hybrid-ORs. Reported advantages of hybrid-ORs included immediate assessment of outcomes, reduced surgical revision rate, and the ability to perform combined open and endovascular procedures, among others. Concerns about increased radiation exposure and procedural time were some of the limitations mentioned. CONCLUSION In the field of neurosurgery, the use of hybrid-ORs for different applications is increasing. Hybrid-ORs provide preprocedure, intraprocedure, and end-of-procedure imaging capabilities, thereby increasing surgical precision, and reducing the need for postoperative imaging and correction surgeries. Despite these advantages, radiation exposure to patient and staff is an important concern.
Collapse
Affiliation(s)
- Maria Gharios
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Victor Gabriel El-Hajj
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Neurosurgery, Karolinska University Hospital, Eugeniavägen 6, 4Th Floor, Solna, 17164, Stockholm, Sweden.
| | - Henrik Frisk
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Ohlsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Artur Omar
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Edström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Adrian Elmi-Terander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Liu ZQ, Hsieh CT, Hsu WE, Tseng CS, Chang CJ. Two-dimensional C-arm robotic navigation system (i-Navi) in spine surgery: a pilot study. Int J Comput Assist Radiol Surg 2022; 17:2281-2290. [PMID: 36100733 DOI: 10.1007/s11548-022-02751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE Pedicle screws placement is very common procedure in spinal surgery. Robotic assisted surgery has been widely used in this operation. We assessed the accuracy of thoracolumbar spine trans-pedicle screws (TPS) implantation utilizing a noval robotic navigation system (i-Navi robotic navigation system) by planning with two-dimensional (2-D) C-arm. METHODS This study was approved by the Institutional Review Board of the Cathay General Hospital on June 21, 2018 (IRB number: CGH-P 106,092), and written informed consents were obtained from all the patients. There are 18 patients were enrolled in the study. All the patients received the posterior fusion with TPS insertion under the assistant of our robotic navigation system. RESULTS There are 18 patients were included into our study, there are 2 patients were quitted from the study due to the equipment setup was not complete. Other 16 patients completed the entire procedure successfully. There is total 88 pedicle screws were inserted through i-Navi robotic navigation system. There are 79 of 88 screws were graded A, and 9 screws were graded B; no screws were graded C or D. No vascular or nerve injuries were noted after the operations. CONCLUSION We present our i-Navi robotic navigation system, by planning with 2-D C-arm imaging and pre-operative CT scans. According to the results of study, we think it can provide a reliable and easy tool to perform the TPS in thoracic lumbar spine surgery.
Collapse
Affiliation(s)
- Zhao-Quan Liu
- Division of Neurosurgery, Department of Surgery, Cathay General Hospital, Taipei City, 106, Taiwan.,Division of Neurosurgery, Department of Surgery, Sijhih Cathay General Hospital, New Taipei City, 221, Taiwan
| | - Cheng-Ta Hsieh
- Division of Neurosurgery, Department of Surgery, Cathay General Hospital, Taipei City, 106, Taiwan.,Division of Neurosurgery, Department of Surgery, Sijhih Cathay General Hospital, New Taipei City, 221, Taiwan.,School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan.,Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Wei-En Hsu
- Department of Mechanical Engineering, National Central University, Taoyuan County, Taiwan
| | - Ching-Shiow Tseng
- Department of Mechanical Engineering, National Central University, Taoyuan County, Taiwan
| | - Chih-Ju Chang
- Division of Neurosurgery, Department of Surgery, Cathay General Hospital, Taipei City, 106, Taiwan. .,Division of Neurosurgery, Department of Surgery, Sijhih Cathay General Hospital, New Taipei City, 221, Taiwan. .,School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan. .,Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan.
| |
Collapse
|