1
|
Kulkarni S, Kumar A, Pandey A, Soman S, Subramanian S, Mutalik S. Exploring 99mTc-Labeled Iron-Binding Glycoprotein Nanoparticles as a Potential Nanoplatform for Sentinel Lymph Node Imaging: Development, Characterization, and Radiolabeling Studies. ACS OMEGA 2024; 9:42410-42422. [PMID: 39431106 PMCID: PMC11483396 DOI: 10.1021/acsomega.4c05991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024]
Abstract
Lactoferrin, an iron binding glycoprotein-based nanoparticle, has emerged as a promising platform for drug delivery and imaging. This study presents the potential use of the protein nanocarrier in tracking sentinel lymph nodes for cancer staging. Lactoferrin nanoparticles (LF-NPs) were synthesized using a thermal treatment process and optimized to obtain 60-70 nm particle size with PDI less than 0.2. The NPs were characterized microscopically and spectroscopically, ensuring a comprehensive understanding of their physicochemical properties. The LF-NPs were found to be stable in different pH conditions. Their biocompatibility was confirmed through cytotoxicity assessments on RAW 264.7 cells, and hemolysis assay and in vivo toxicity study reveal their safe profile. Additionally, LF-NPs were successfully radiolabeled with technetium-99m (>90% labeling yield). Cell uptake studies with RAW 264.7 exhibited an uptake of ∼6%. Biodistribution studies in Wistar rats shed light on their in vivo behavior and suitability for targeted drug delivery systems. These findings collectively emphasize the multifaceted utility of LF-NPs, positioning them as a promising platform for diverse biomedical innovations.
Collapse
Affiliation(s)
- Sanjay Kulkarni
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Anuj Kumar
- Radiopharmaceuticals
Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra State 400085, India
| | - Abhijeet Pandey
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Global
Drug Development/Technical Research and Development, Novartis Healthcare Pvt. Ltd., Genome Valley, Hyderabad 500081, India
| | - Soji Soman
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Suresh Subramanian
- Radiopharmaceuticals
Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra State 400085, India
| | - Srinivas Mutalik
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
2
|
Ponzini E, Astolfi G, Grandori R, Tavazzi S, Versura P. Development, Optimization, and Clinical Relevance of Lactoferrin Delivery Systems: A Focus on Ocular Delivery. Pharmaceutics 2024; 16:804. [PMID: 38931931 PMCID: PMC11207246 DOI: 10.3390/pharmaceutics16060804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Lactoferrin (Lf), a multifunctional protein found abundantly in secretions, including tears, plays a crucial role in ocular health through its antimicrobial, immunoregulatory, anti-inflammatory, and antioxidant activities. Advanced delivery systems are desirable to fully leverage its therapeutic potential in treating ocular diseases. The process of Lf quantification for diagnostic purposes underscores the importance of developing reliable, cost-effective detection methods, ranging from conventional techniques to advanced nano-based sensors. Despite the ease and non-invasiveness of topical administration for ocular surface diseases, challenges such as rapid drug elimination necessitate innovations, such as Lf-loaded contact lenses and biodegradable polymeric nanocapsules, to enhance drug stability and bioavailability. Furthermore, overcoming ocular barriers for the treatment of posterior segment disease calls for nano-formulations. The scope of this review is to underline the advancements in nanotechnology-based Lf delivery methods, emphasizing the pivotal role of multidisciplinary approaches and cross-field strategies in improving ocular drug delivery and achieving better therapeutic outcomes for a wide spectrum of eye conditions.
Collapse
Affiliation(s)
- Erika Ponzini
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, I-20125 Milan, Italy
- COMiB Research Center, University of Milano-Bicocca, via R. Cozzi 55, I-20125 Milan, Italy
| | - Gloria Astolfi
- Ophthalmology Unit, Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Alma Mater Studiorum Università di Bologna, via Palagi 9, I-40138 Bologna, Italy; (G.A.); (P.V.)
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milan, Italy;
- Institute for Advanced Simulations, Forschungszentrum Juelich, 52428 Juelich, Germany
| | - Silvia Tavazzi
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, I-20125 Milan, Italy
- COMiB Research Center, University of Milano-Bicocca, via R. Cozzi 55, I-20125 Milan, Italy
| | - Piera Versura
- Ophthalmology Unit, Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Alma Mater Studiorum Università di Bologna, via Palagi 9, I-40138 Bologna, Italy; (G.A.); (P.V.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, via Palagi 9, I-40138 Bologna, Italy
| |
Collapse
|
3
|
Cheng Y, Cai S, Wu H, Pan J, Su M, Wei X, Ye J, Ke L, Liu G, Chu C. Revolutionizing eye care: the game-changing applications of nano-antioxidants in ophthalmology. NANOSCALE 2024; 16:7307-7322. [PMID: 38533621 DOI: 10.1039/d4nr00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Since the theory of free radical-induced aging was proposed in 1956, it has been constantly proven that reactive oxygen species (ROS) produced by oxidative stress play a vital role in the occurrence and progression of eye diseases. However, the inherent limitations of traditional drug therapy hindered the development of ophthalmic disease treatment. In recent years, great achievements have been made in the research of nanomedicine, which promotes the rapid development of safe theranostics in ophthalmology. In this review, we focus on the applications of antioxidant nanomedicine in the treatment of ophthalmology. The eye diseases were mainly classified into two categories: ocular surface diseases and posterior eye diseases. In each part, we first introduced the pathology of specific diseases about oxidative stress, and then presented the representative application examples of nano-antioxidants in eye disease therapy. Meanwhile, the nanocarriers that were used, the mechanism of function, and the therapeutic effect were also presented. Finally, we summarized the latest research progress and limitations of antioxidant nanomedicine for eye disease treatment and put forward the prospects of future development.
Collapse
Affiliation(s)
- Yuhang Cheng
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Shundong Cai
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Han Wu
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jintao Pan
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
| | - Min Su
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China.
| | - Xingyuan Wei
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jinfa Ye
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Lang Ke
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
| | - Chengchao Chu
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
4
|
Ouyang J, Zhou L, Wang Q. Spotlight on iron and ferroptosis: research progress in diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1234824. [PMID: 37772084 PMCID: PMC10525335 DOI: 10.3389/fendo.2023.1234824] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
Iron, as the most abundant metallic element within the human organism, is an indispensable ion for sustaining life and assumes a pivotal role in governing glucose and lipid metabolism, along with orchestrating inflammatory responses. The presence of diabetes mellitus (DM) can induce aberrant iron accumulation within the corporeal system. Consequentially, iron overload precipitates a sequence of important adversities, subsequently setting in motion a domino effect wherein ferroptosis emerges as the utmost pernicious outcome. Ferroptosis, an emerging variant of non-apoptotic regulated cell death, operates independently of caspases and GSDMD. It distinguishes itself from alternative forms of controlled cell death through distinctive morphological and biochemical attributes. Its principal hallmark resides in the pathological accrual of intracellular iron and the concomitant generation of iron-driven lipid peroxides. Diabetic retinopathy (DR), established as the predominant cause of adult blindness, wields profound influence over the well-being and psychosocial strain experienced by afflicted individuals. Presently, an abundance of research endeavors has ascertained the pervasive engagement of iron and ferroptosis in the microangiopathy inherent to DR. Evidently, judicious management of iron overload and ferroptosis in the early stages of DR bears the potential to considerably decelerate disease progression. Within this discourse, we undertake a comprehensive exploration of the regulatory mechanisms governing iron homeostasis and ferroptosis. Furthermore, we expound upon the subsequent detriments induced by their dysregulation. Concurrently, we elucidate the intricate interplay linking iron overload, ferroptosis, and DR. Delving deeper, we engage in a comprehensive deliberation regarding strategies to modulate their influence, thereby effecting prospective interventions in the trajectory of DR's advancement or employing them as therapeutic modalities.
Collapse
Affiliation(s)
- Junlin Ouyang
- Department of Endocrinology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Zhou
- Department of Obstetrics and Gynecology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Qing Wang
- Department of Endocrinology, China–Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Artym J, Zimecki M. Colostrum Proteins in Protection against Therapy-Induced Injuries in Cancer Chemo- and Radiotherapy: A Comprehensive Review. Biomedicines 2023; 11:114. [PMID: 36672622 PMCID: PMC9856106 DOI: 10.3390/biomedicines11010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
In this article, we review the benefits of application of colostrum and colostrum-derived proteins in animal models and clinical trials that include chemotherapy with antimetabolic drugs, radiotherapy and surgical interventions. A majority of the reported investigations was performed with bovine colostrum (BC) and native bovine or recombinant human lactoferrin (LF), applied alone, in nutraceutics or in combination with probiotics. Apart from reducing side effects of the applied therapeutics, radiation and surgical procedures, BC and LF augmented their efficacy and improved the wellness of patients. In conclusion, colostrum and colostrum proteins, preferably administered with probiotic bacteria, are highly recommended for inclusion to therapeutic protocols in cancer chemo- and radiotherapy as well as during the surgical treatment of cancer patients.
Collapse
Affiliation(s)
| | - Michał Zimecki
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12 Str., 53-114 Wrocław, Poland
| |
Collapse
|