1
|
Hussein HAM, Thabet AA, Wardany AA, El-Adly AM, Ali M, Hassan MEA, Abdeldayem MAB, Mohamed ARMA, Sobhy A, El-Mokhtar MA, Afifi MM, Fathy SM, Sultan S. SARS-CoV-2 outbreak: role of viral proteins and genomic diversity in virus infection and COVID-19 progression. Virol J 2024; 21:75. [PMID: 38539202 PMCID: PMC10967059 DOI: 10.1186/s12985-024-02342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/12/2024] [Indexed: 05/15/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is the cause of coronavirus disease 2019 (COVID-19); a severe respiratory distress that has emerged from the city of Wuhan, Hubei province, China during December 2019. COVID-19 is currently the major global health problem and the disease has now spread to most countries in the world. COVID-19 has profoundly impacted human health and activities worldwide. Genetic mutation is one of the essential characteristics of viruses. They do so to adapt to their host or to move to another one. Viral genetic mutations have a high potentiality to impact human health as these mutations grant viruses unique unpredicted characteristics. The difficulty in predicting viral genetic mutations is a significant obstacle in the field. Evidence indicates that SARS-CoV-2 has a variety of genetic mutations and genomic diversity with obvious clinical consequences and implications. In this review, we comprehensively summarized and discussed the currently available knowledge regarding SARS-CoV-2 outbreaks with a fundamental focus on the role of the viral proteins and their mutations in viral infection and COVID-19 progression. We also summarized the clinical implications of SARS-CoV-2 variants and how they affect the disease severity and hinder vaccine development. Finally, we provided a massive phylogenetic analysis of the spike gene of 214 SARS-CoV-2 isolates from different geographical regions all over the world and their associated clinical implications.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt.
| | - Ali A Thabet
- Department of Zoology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Ahmed A Wardany
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Ahmed M El-Adly
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Mohamed Ali
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Mohamed E A Hassan
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Mohamed A B Abdeldayem
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | | | - Ali Sobhy
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, 71524, Assiut, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos Campus, Lebanon
| | - Magdy M Afifi
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Samah M Fathy
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt.
| | - Serageldeen Sultan
- Department of Microbiology, Virology Division, Faculty of Veterinary medicine, South Valley University, 83523, Qena, Egypt.
| |
Collapse
|
2
|
Flacco ME, Acuti Martellucci C, Baccolini V, De Vito C, Renzi E, Villari P, Manzoli L. Risk of reinfection and disease after SARS-CoV-2 primary infection: Meta-analysis. Eur J Clin Invest 2022; 52:e13845. [PMID: 35904405 PMCID: PMC9353414 DOI: 10.1111/eci.13845] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/09/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION A precise estimate of the frequency and severity of SARS-CoV-2 reinfections would be critical to optimize restriction and vaccination policies for the hundreds of millions previously infected subjects. We performed a meta-analysis to evaluate the risk of reinfection and COVID-19 following primary infection. METHODS We searched MedLine, Scopus and preprint repositories for cohort studies evaluating the onset of new infections among baseline SARS-CoV-2-positive subjects. Random-effect meta-analyses of proportions were stratified by gender, exposure risk, vaccination status, viral strain, time between episodes, and reinfection definition. RESULTS Ninety-one studies, enrolling 15,034,624 subjects, were included. Overall, 158,478 reinfections were recorded, corresponding to a pooled rate of 0.97% (95% CI: 0.71%-1.27%), with no substantial differences by definition criteria, exposure risk or gender. Reinfection rates were still 0.66% after ≥12 months from first infection, and the risk was substantially lower among vaccinated subjects (0.32% vs. 0.74% for unvaccinated individuals). During the first 3 months of Omicron wave, the reinfection rates reached 3.31%. Overall rates of severe/lethal COVID-19 were very low (2-7 per 10,000 subjects according to definition criteria) and were not affected by strain predominance. CONCLUSIONS A strong natural immunity follows the primary infection and may last for more than one year, suggesting that the risk and health care needs of recovered subjects might be limited. Although the reinfection rates considerably increased during the Omicron wave, the risk of a secondary severe or lethal disease remained very low. The risk-benefit profile of multiple vaccine doses for this subset of population needs to be carefully evaluated.
Collapse
Affiliation(s)
- Maria Elena Flacco
- Department of Environmental and Preventive Sciences, University of Ferrara, Ferrara, Italy
| | | | - Valentina Baccolini
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Corrado De Vito
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Erika Renzi
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Paolo Villari
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Lamberto Manzoli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Narayanan SN, Shivappa P, Padiyath S, Bhaskar A, Li YW, Merghani TH. The Prevalence and Pathophysiology of Chemical Sense Disorder Caused by the Novel Coronavirus. Front Public Health 2022; 10:839182. [PMID: 35734755 PMCID: PMC9207763 DOI: 10.3389/fpubh.2022.839182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/20/2022] [Indexed: 12/27/2022] Open
Abstract
Emerging viral infections are a ceaseless challenge and remain a global public health concern. The world has not yet come back to normal from the devastating effects of the highly contagious and pathogenic novel coronavirus, or Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Olfactory and taste dysfunction is common in patients infected by the novel coronavirus. In light of the emergence of different coronavirus variants, it is important to update the prevalence and pathophysiology of these side effects. In this review, articles published on the prevalence of olfactory and taste dysfunction from coronavirus disease (COVID-19) and their possible pathophysiologic mechanisms have been reviewed and reported. The modulatory role of different SARS-CoV-2 variants on the chemical senses is then described. The clinical relevance of chemical sense disorder and its long-term morbidity and management is also discussed.
Collapse
Affiliation(s)
- Sareesh Naduvil Narayanan
- Department of Physiology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- *Correspondence: Sareesh Naduvil Narayanan ; orcid.org/0000-0002-2980-2352
| | - Pooja Shivappa
- Department of Basic Sciences, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Sreeshma Padiyath
- Independent Microbiology Researcher, Ras Al Khaimah, United Arab Emirates
| | - Anand Bhaskar
- Department of Biomedical Sciences, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Yan Wa Li
- Department of Biomedical Sciences, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Tarig Hakim Merghani
- Department of Physiology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|