1
|
Liu Q, Xue Y, Guo J, Tao L, Zhu Y. Citrate: a key signalling molecule and therapeutic target for bone remodeling disorder. Front Endocrinol (Lausanne) 2025; 15:1512398. [PMID: 39886032 PMCID: PMC11779597 DOI: 10.3389/fendo.2024.1512398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025] Open
Abstract
Bone remodeling is a continuous cyclic process that maintains and regulates bone structure and strength. The disturbance of bone remodeling leads to a series of bone metabolic diseases. Recent studies have shown that citrate, an intermediate metabolite of the tricarboxylic acid (TCA) cycle, plays an important role in bone remodeling. But the exact mechanism is still unclear. In this study, we focused on the systemic regulatory mechanism of citrate on bone remodeling, and found that citrate is involved in bone remodeling in multiple ways. The participation of citrate in oxidative phosphorylation (OXPHOS) facilitates the generation of ATP, thereby providing substantial energy for bone formation and resorption. Osteoclast-mediated bone resorption releases citrate from bone mineral salts, which is subsequently released as an energy source to activate the osteogenic differentiation of stem cells. Finally, the differentiated osteoblasts secrete into the bone matrix and participate in bone mineral salts formation. As a substrate of histone acetylation, citrate regulates the expression of genes related to bone formation and bone reabsorption. Citrate is also a key intermediate in the metabolism and synthesis of glucose, fatty acids and amino acids, which are three major nutrients in the organism. Citrate can also be used as a biomarker to monitor bone mass transformation and plays an important role in the diagnosis and therapeutic evaluation of bone remodeling disorders. Citrate imbalance due to citrate transporter could result in the supression of osteoblast/OC function through histone acetylation, thereby contributing to disorders in bone remodeling. Therefore, designing drugs targeting citrate-related proteins to regulate bone citrate content provides a new direction for the drug treatment of diseases related to bone remodeling disorders.
Collapse
Affiliation(s)
| | | | | | - Lin Tao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Gencoglu H, Orhan C, Sahin K. Understanding Cr(III) Action on Mitochondrial ATP Synthase and AMPK Efficacy: Insights from Previous Studies-a Review. Biol Trace Elem Res 2024; 202:1325-1334. [PMID: 38105318 DOI: 10.1007/s12011-023-04010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Chromium supplementation has been notably recognized for its potential health benefits, especially in enhancing insulin sensitivity and managing glucose metabolism. However, recent studies have begun to shed light on additional mechanisms of action for chromium, expanding our understanding beyond its classical effects on the insulin-signaling pathway. The beta subunit of mitochondrial ATP synthase is considered a novel site for Cr(III) action, influencing physiological effects apart from insulin signaling. The physiological effects of chromium supplementation have been extensively studied, particularly in its role in anti-oxidative efficacy and glucose metabolism. However, recent advancements have prompted a re-evaluation of chromium's mechanisms of action beyond the insulin signaling pathway. The discovery of the beta subunit of mitochondrial ATP synthase as a potential target for chromium action is discussed, emphasizing its crucial role in cellular energy production and metabolic regulation. A meticulous analysis of relevant studies that were earlier carried out could shed light on the relationship between chromium supplementation and mitochondrial ATP synthase. This review categorizes studies based on their primary investigations, encompassing areas such as muscle protein synthesis, glucose and lipid metabolism, and antioxidant properties. Findings from these studies are scrutinized to distinguish patterns aligning with the new hypothesis. Central to this exploration is the presentation of studies highlighting the physiological effects of chromium that extend beyond the insulin signaling pathway. Evaluating the various independent mechanisms of action that chromium impacts cellular energy metabolism and overall metabolic balance has become more important. In conclusion, this review is a paradigm shift in understanding chromium supplementation, paving the way for future investigations that leverage the intricate interplay between chromium and mitochondrial ATP synthase.
Collapse
Affiliation(s)
- Hasan Gencoglu
- Department of Biology, Faculty of Science, Firat University, Elazig, 23119, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Firat University, Elazig, 23119, Turkey
| | - Kazim Sahin
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Firat University, Elazig, 23119, Turkey.
| |
Collapse
|
3
|
Han L, Huang Y, Li B, Wang W, Sun YL, Zhang X, Zhang W, Liu S, Zhou W, Xia W, Zhang M. The metallic compound promotes primordial follicle activation and ameliorates fertility deficits in aged mice. Theranostics 2023; 13:3131-3148. [PMID: 37351158 PMCID: PMC10283063 DOI: 10.7150/thno.82553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/07/2023] [Indexed: 06/24/2023] Open
Abstract
Background: Aged women and premature ovarian insufficiency (POI) patients have residual dormant primordial follicles that are hard to be activated through a physiological process. However, there are no effective and safe drugs to help them. Methods: We used the in vitro culture model of newborn mouse ovaries to identify the drugs that promote primordial follicle activation and study its mechanisms. It was verified by in vivo injection model of newborn mice and in vitro culture model of human ovarian tissue. In addition, we used the aged mice as a low infertility model to verify the effects of primordial follicle activation, and fertility by drugs. Results: Eleven metallic compounds activated mouse primordial follicles, and the five most effective compounds were selected for further study. Thapsigargin (TG), CrCl3, MnCl2, FeCl3 and ZnSO4 increased the levels of the glycolysis-related proteins (glucose transporter type 4, GLUT4; hexokinase 1, HK1; pyruvate kinase M2, PKM2; phosphofructokinase, liver type, PFKL), phosphorylated mammalian target of rapamycin (p-mTOR) in cultured mouse ovaries. The compound-promoted p-mTOR levels could be completely blocked by 2-DG (the inhibitor of glycolysis). The compounds also increased the levels of phosphorylated protein kinase B (p-Akt). TG-, CrCl3- and FeCl3-promoted p-Akt levels, but not MnCl2- and ZnSO4- promoted p-Akt levels, could be completely blocked by ISCK03 (the inhibitor of proto-oncogenic receptor tyrosine kinase, KIT). The injection of newborn mice with the compounds also activated primordial follicles and increased the levels of the glycolysis-related proteins, p-mTOR, and p-Akt. The oral administration of the compounds in adolescent and aged mice promoted primordial follicle activation, and had no obvious side effect. Importantly, ZnSO4 also increased ovulated oocytes, oocyte quality and offspring in aged mice. Furthermore, the compounds promoted human primordial follicle activation and increased the levels of the glycolysis-related proteins, p-mTOR, and p-Akt. Conclusion: The metallic compounds activate primordial follicles through the glycolysis-dependent mTOR pathway and/or the PI3K/Akt pathway, and the oral administration of ZnSO4 enhances fertility in aged mice. We suggest that these metallic compounds may be oral drugs to ameliorate fertility deficits in aged women and POI patients.
Collapse
Affiliation(s)
- Lincheng Han
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yingying Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Biao Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Weiyong Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yan-li Sun
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaodan Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Wenbo Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Shuang Liu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Wenjun Zhou
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Wei Xia
- Department of Reproductive Medicine Centre, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Meijia Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|