1
|
Tain YL, Hsu CN, Hou CY, Chen CK. Antihypertensive Effects of a Sodium Thiosulfate-Loaded Nanoparticle in a Juvenile Chronic Kidney Disease Rat Model. Antioxidants (Basel) 2024; 13:1574. [PMID: 39765901 PMCID: PMC11673196 DOI: 10.3390/antiox13121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Sodium thiosulfate (STS), a precursor of hydrogen sulfide (H2S), has demonstrated antihypertensive properties. Previous studies have suggested that H2S-based interventions can prevent hypertension in pediatric chronic kidney disease (CKD). However, the clinical application of STS is limited by its rapid release and intravenous administration. To address this, we developed a poly-lactic acid (PLA)-based nanoparticle system for sustained STS delivery and investigated whether weekly treatment with STS-loaded nanoparticles (NPs) could protect against hypertension in a juvenile CKD rat model. Male Sprague Dawley rats, aged three weeks, were fed a diet containing 0.5% adenine for three weeks to induce a model of pediatric CKD. STS-loaded NPs (25 mg/kg) were administered intravenously during weeks 6, 7, and 8, and at week 9, all rats were sacrificed. Treatment with STS-loaded NPs reduced systolic and diastolic blood pressure by 10 mm Hg and 8 mm Hg, respectively, in juvenile CKD rats. The protective effect of STS-loaded NPs was linked to increased renal expression of H2S-producing enzymes, including cystathionine γ-lyase (CSE) and D-amino acid oxidase (DAO). Additionally, STS-loaded NP therapy restored nitric oxide (NO) signaling, increasing L-arginine levels, which were disrupted in CKD. Furthermore, the beneficial effects of STS-loaded NPs were associated with inhibition of the renin-angiotensin system (RAS) and the enhancement of the NO signaling pathway. Our findings suggest that STS-loaded NP treatment provides sustained STS delivery and effectively reduces hypertension in a juvenile CKD rat model, bringing us closer to the clinical translation of STS-based therapy for pediatric CKD-induced hypertension.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
2
|
Ott H, Bennewitz K, Zhang X, Prianichnikova M, Sticht C, Poschet G, Kroll J. Sodium thiosulfate treatment rescues hyperglycaemia-induced pronephros damage in zebrafish by upregulating nitric oxide signalling. J Physiol 2024. [PMID: 39264236 DOI: 10.1113/jp286398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024] Open
Abstract
Sodium thiosulfate (STS) is gaining increasing attention in research for its potential therapeutic applications across a spectrum of disease processes beyond its current uses. However, the precise mechanisms of action remain incompletely understood. We investigated the efficacy of STS in treating hyperglycaemia-induced pronephros damage in zebrafish to gain further insight into the underlying mechanisms. Hyperglycaemia was induced in zebrafish by suppressing the pdx1 transcription factor, which plays a crucial role in maintaining physiological pancreatic function. STS was administered by introducing it into the medium of zebrafish larvae. The pronephros structure was analysed at 48 h post-fertilization. Metabolomic profiling and RNA sequencing were conducted on groups exposed to various experimental conditions. Our findings reveal a downregulation of nitric oxide (NO) signalling in zebrafish with a knocked-down pdx1 gene, both metabolomically and transcriptionally. Notably, treatment with STS led to a compensatory upregulation of the NO signalling, ultimately resulting in the rescue of the pronephros structure. Our study provides compelling evidence that targeting NO metabolism by the administration of STS offers a promising strategy for addressing hyperglycaemia-induced organ damage. These findings underscore the potential of STS as a promising therapeutic agent for diabetic complications and warrant further investigation of its clinical applications. KEY POINTS: Sodium thiosulfate (STS) is increasingly drawing attention in research for its potential therapeutic applications across a spectrum of disease processes. Here, we demonstrate that STS treatment rescues hyperglycaemia-induced pronephros damage in zebrafish. We identified upregulation of nitric oxide signalling as the major driver behind STS-mediated rescue. Our data suggest that STS offers a promising strategy for addressing hyperglycaemia-induced organ damage, including diabetic nephropathy.
Collapse
Affiliation(s)
- Hannes Ott
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xin Zhang
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mariia Prianichnikova
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
3
|
Tang SM, Lu GZ, Lei XY, Yang XY, Tang GT, Yu J, Xie ZZ. Sodium thiosulfate: A donor or carrier signaling molecule for hydrogen sulfide? Nitric Oxide 2024; 149:67-74. [PMID: 38897561 DOI: 10.1016/j.niox.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Sodium thiosulfate has been used for decades in the treatment of calciphylaxis and cyanide detoxification, and has recently shown initial therapeutic promise in critical diseases such as neuronal ischemia, diabetes mellitus, heart failure and acute lung injury. However, the precise mechanism of sodium thiosulfate remains incompletely defined and sometimes contradictory. Although sodium thiosulfate has been widely accepted as a donor of hydrogen sulfide (H2S), emerging findings suggest that it is the executive signaling molecule for H2S and that its effects may not be dependent on H2S. This article presents an overview of the current understanding of sodium thiosulfate, including its synthesis, biological characteristics, and clinical applications of sodium thiosulfate, as well as the underlying mechanisms in vivo. We also discussed the interplay of sodium thiosulfate and H2S. Our review highlights sodium thiosulfate as a key player in sulfide signaling with the broad clinical potential for the future.
Collapse
Affiliation(s)
- Si-Miao Tang
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Guo-Zhong Lu
- 922th Hospital of Hengyang, Hunan, 421001, China
| | - Xiao-Yong Lei
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Xiao-Yan Yang
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Guo-Tao Tang
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Jia Yu
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhi-Zhong Xie
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Slade L, Deane CS, Szewczyk NJ, Etheridge T, Whiteman M. Hydrogen sulfide supplementation as a potential treatment for primary mitochondrial diseases. Pharmacol Res 2024; 203:107180. [PMID: 38599468 DOI: 10.1016/j.phrs.2024.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Primary mitochondrial diseases (PMD) are amongst the most common inborn errors of metabolism causing fatal outcomes within the first decade of life. With marked heterogeneity in both inheritance patterns and physiological manifestations, these conditions present distinct challenges for targeted drug therapy, where effective therapeutic countermeasures remain elusive within the clinic. Hydrogen sulfide (H2S)-based therapeutics may offer a new option for patient treatment, having been proposed as a conserved mitochondrial substrate and post-translational regulator across species, displaying therapeutic effects in age-related mitochondrial dysfunction and neurodegenerative models of mitochondrial disease. H2S can stimulate mitochondrial respiration at sites downstream of common PMD-defective subunits, augmenting energy production, mitochondrial function and reducing cell death. Here, we highlight the primary signalling mechanisms of H2S in mitochondria relevant for PMD and outline key cytoprotective proteins/pathways amenable to post-translational restoration via H2S-mediated persulfidation. The mechanisms proposed here, combined with the advent of potent mitochondria-targeted sulfide delivery molecules, could provide a framework for H2S as a countermeasure for PMD disease progression.
Collapse
Affiliation(s)
- Luke Slade
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Colleen S Deane
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Nathaniel J Szewczyk
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom; Ohio Musculoskeletal and Neurologic Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, Greece
| | - Timothy Etheridge
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom.
| | - Matthew Whiteman
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK.
| |
Collapse
|
5
|
Baskaran K, Johnson JT, Prem PN, Ravindran S, Kurian GA. Evaluation of prophylactic efficacy of sodium thiosulfate in combating I/R injury in rat brain: exploring its efficiency further in vascular calcified brain slice model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2587-2598. [PMID: 37058187 DOI: 10.1007/s00210-023-02481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Cerebral ischemia reperfusion injury (CIR) is one of the clinical manifestations encountered during the management of stroke. High prevalence of intracranial arterial calcification is reported in stroke patients. However, the impact of vascular calcification (VC) in the outcome of CIR and the efficacy of mechanical preconditioning (IPC) and pharmacological conditioning with sodium thiosulphate (STS) in ameliorating IR remains unclear. Two experimental models namely carotid artery occlusion (n = 36) and brain slice models (n = 18) were used to evaluate the efficacy of STS in male Wistar rats. IR was inflicted in rat by occluding carotid artery for 30 min followed by 24-h reperfusion after STS (100 mg/kg) administration. Brain slice model was used to reconfirm the results to account blood brain barrier permeability. Further, brain slice tissue was utilised to evaluate the efficacy of STS in VC rat brain by measuring the histological alterations and biochemical parameters. Pre-treatment of STS prior to CIR in intact animal significantly reduced the IR-associated histopathological alterations in brain, declined oxidative stress and improved the mitochondrial function found to be similar to IPC. Brain slice model data also confirmed the neuroprotective effect of STS similar to IPC in IR challenged tissue slice. Higher tissue injury was noted in VC brain IR tissue than normal IR tissue. Therapeutic efficacy of STS was evident in VC rat brain tissues and normal tissues subjected to IR. On the other hand, IPC-mediated protection was noted only in IR normal and adenine-induced VC brain tissues not in high-fat diet (HFD) induced VC brain tissues. Based on the results, we concluded that similar to IPC, STS was effective in attenuating IR injury in CIR rat brain. Vascular calcification adversely affected the recovery protocol of brain tissues from ischemic insult. STS was found to be an effective agent in ameliorating the IR injury in both adenine and HFD induced vascular calcified rat brain, but IPC-mediated neuroprotection was absent in HFD-induced VC brain tissues.
Collapse
Affiliation(s)
- Keerthana Baskaran
- Vascular Biology Lab, SASTRA Deemed University, 117, Anusandhan Kendra, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India
| | - Jefri Thimoathi Johnson
- Vascular Biology Lab, SASTRA Deemed University, 117, Anusandhan Kendra, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India
| | - Priyanka N Prem
- Vascular Biology Lab, SASTRA Deemed University, 117, Anusandhan Kendra, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India
- School of Chemical and Biotechnology, SASTRA Deemed University, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India
| | - Sriram Ravindran
- Vascular Biology Lab, SASTRA Deemed University, 117, Anusandhan Kendra, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India
| | - Gino A Kurian
- Vascular Biology Lab, SASTRA Deemed University, 117, Anusandhan Kendra, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India.
- School of Chemical and Biotechnology, SASTRA Deemed University, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
6
|
Oxidative Stress and Mitochondrial Dysfunction in Chronic Kidney Disease. Cells 2022; 12:cells12010088. [PMID: 36611880 PMCID: PMC9818928 DOI: 10.3390/cells12010088] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The kidney contains many mitochondria that generate ATP to provide energy for cellular processes. Oxidative stress injury can be caused by impaired mitochondria with excessive levels of reactive oxygen species. Accumulating evidence has indicated a relationship between oxidative stress and kidney diseases, and revealed new insights into mitochondria-targeted therapeutics for renal injury. Improving mitochondrial homeostasis, increasing mitochondrial biogenesis, and balancing mitochondrial turnover has the potential to protect renal function against oxidative stress. Although there are some reviews that addressed this issue, the articles summarizing the relationship between mitochondria-targeted effects and the risk factors of renal failure are still few. In this review, we integrate recent studies on oxidative stress and mitochondrial function in kidney diseases, especially chronic kidney disease. We organized the causes and risk factors of oxidative stress in the kidneys based in their mitochondria-targeted effects. This review also listed the possible candidates for clinical therapeutics of kidney diseases by modulating mitochondrial function.
Collapse
|
7
|
Merz T, McCook O, Brucker C, Waller C, Calzia E, Radermacher P, Datzmann T. H 2S in Critical Illness-A New Horizon for Sodium Thiosulfate? Biomolecules 2022; 12:543. [PMID: 35454132 PMCID: PMC9029606 DOI: 10.3390/biom12040543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/13/2022] Open
Abstract
Ever since the discovery of endogenous H2S and the identification of its cytoprotective properties, efforts have been made to develop strategies to use H2S as a therapeutic agent. The ability of H2S to regulate vascular tone, inflammation, oxidative stress, and apoptosis might be particularly useful in the therapeutic management of critical illness. However, neither the inhalation of gaseous H2S, nor the administration of inorganic H2S-releasing salts or slow-releasing H2S-donors are feasible for clinical use. Na2S2O3 is a clinically approved compound with a good safety profile and is able to release H2S, in particular under hypoxic conditions. Pre-clinical studies show promise for Na2S2O3 in the acute management of critical illness. A current clinical trial is investigating the therapeutic potential for Na2S2O3 in myocardial infarct. Pre-eclampsia and COVID-19 pneumonia might be relevant targets for future clinical trials.
Collapse
Affiliation(s)
- Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (O.M.); (E.C.); (P.R.)
- Clinic for Anesthesiology and Intensive Care, Ulm University Medical Center, 89081 Ulm, Germany;
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (O.M.); (E.C.); (P.R.)
| | - Cosima Brucker
- Department of Gynecology and Obstetrics, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany;
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany;
| | - Enrico Calzia
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (O.M.); (E.C.); (P.R.)
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (O.M.); (E.C.); (P.R.)
| | - Thomas Datzmann
- Clinic for Anesthesiology and Intensive Care, Ulm University Medical Center, 89081 Ulm, Germany;
| |
Collapse
|
8
|
Dugbartey GJ, Juriasingani S, Zhang MY, Sener A. H 2S donor molecules against cold ischemia-reperfusion injury in preclinical models of solid organ transplantation. Pharmacol Res 2021; 172:105842. [PMID: 34450311 DOI: 10.1016/j.phrs.2021.105842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022]
Abstract
Cold ischemia-reperfusion injury (IRI) is an inevitable and unresolved problem that poses a great challenge in solid organ transplantation (SOT). It represents a major factor that increases acute tubular necrosis, decreases graft survival, and delays graft function. This complicates graft quality, post-transplant patient care and organ transplantation outcomes, and therefore undermines the success of SOT. Herein, we review recent advances in research regarding novel pharmacological strategies involving the use of different donor molecules of hydrogen sulfide (H2S), the third established member of the gasotransmitter family, against cold IRI in different experimental models of SOT (kidney, heart, lung, liver, pancreas and intestine). Additionally, we discuss the molecular mechanisms underlying the effects of these H2S donor molecules in SOT, and suggestions for clinical translation. Our reviewed findings showed that storage of donor organs in H2S-supplemented preservation solution or administration of H2S to organ donor prior to organ procurement and to recipient at the start and during reperfusion is a novel, simple and cost-effective pharmacological approach to minimize cold IRI, limit post-transplant complications and improve transplantation outcomes. In conclusion, experimental evidence demonstrate that H2S donors can significantly mitigate cold IRI during SOT through inhibition of a complex cascade of interconnected cellular and molecular events involving microcirculatory disturbance and microvascular dysfunction, mitochondrial injury, inflammatory responses, cell damage and cell death, and other damaging molecular pathways while promoting protective pathways. Translating these promising findings from bench to bedside will lay the foundation for the use of H2S donor molecules in clinical SOT in the future.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Smriti Juriasingani
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada
| | - Max Y Zhang
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada
| | - Alp Sener
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
9
|
Involvement of Tricarboxylic Acid Cycle Metabolites in Kidney Diseases. Biomolecules 2021; 11:biom11091259. [PMID: 34572472 PMCID: PMC8465464 DOI: 10.3390/biom11091259] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are complex organelles that orchestrate several functions in the cell. The primary function recognized is energy production; however, other functions involve the communication with the rest of the cell through reactive oxygen species (ROS), calcium influx, mitochondrial DNA (mtDNA), adenosine triphosphate (ATP) levels, cytochrome c release, and also through tricarboxylic acid (TCA) metabolites. Kidney function highly depends on mitochondria; hence mitochondrial dysfunction is associated with kidney diseases. In addition to oxidative phosphorylation impairment, other mitochondrial abnormalities have been described in kidney diseases, such as induction of mitophagy, intrinsic pathway of apoptosis, and releasing molecules to communicate to the rest of the cell. The TCA cycle is a metabolic pathway whose primary function is to generate electrons to feed the electron transport system (ETS) to drives energy production. However, TCA cycle metabolites can also release from mitochondria or produced in the cytosol to exert different functions and modify cell behavior. Here we review the involvement of some of the functions of TCA metabolites in kidney diseases.
Collapse
|
10
|
Zhang MY, Dugbartey GJ, Juriasingani S, Sener A. Hydrogen Sulfide Metabolite, Sodium Thiosulfate: Clinical Applications and Underlying Molecular Mechanisms. Int J Mol Sci 2021; 22:6452. [PMID: 34208631 PMCID: PMC8235480 DOI: 10.3390/ijms22126452] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
Thiosulfate in the form of sodium thiosulfate (STS) is a major oxidation product of hydrogen sulfide (H2S), an endogenous signaling molecule and the third member of the gasotransmitter family. STS is currently used in the clinical treatment of acute cyanide poisoning, cisplatin toxicities in cancer therapy, and calciphylaxis in dialysis patients. Burgeoning evidence show that STS has antioxidant and anti-inflammatory properties, making it a potential therapeutic candidate molecule that can target multiple molecular pathways in various diseases and drug-induced toxicities. This review discusses the biochemical and molecular pathways in the generation of STS from H2S, its clinical usefulness, and potential clinical applications, as well as the molecular mechanisms underlying these clinical applications and a future perspective in kidney transplantation.
Collapse
Affiliation(s)
- Max Y. Zhang
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada; (M.Y.Z.); (G.J.D.); (S.J.)
- London Health Sciences Center, Multi-Organ Transplant Program, Western University, London, ON N6A 5A5, Canada
| | - George J. Dugbartey
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada; (M.Y.Z.); (G.J.D.); (S.J.)
- London Health Sciences Center, Multi-Organ Transplant Program, Western University, London, ON N6A 5A5, Canada
- London Health Sciences Center, Department of Surgery, Division of Urology, Western University, London, ON N6A 5A5, Canada
| | - Smriti Juriasingani
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada; (M.Y.Z.); (G.J.D.); (S.J.)
- London Health Sciences Center, Department of Surgery, Division of Urology, Western University, London, ON N6A 5A5, Canada
| | - Alp Sener
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada; (M.Y.Z.); (G.J.D.); (S.J.)
- London Health Sciences Center, Multi-Organ Transplant Program, Western University, London, ON N6A 5A5, Canada
- London Health Sciences Center, Department of Surgery, Division of Urology, Western University, London, ON N6A 5A5, Canada
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
11
|
Wang Y, Tang C, Cai J, Chen G, Zhang D, Zhang Z, Dong Z. PINK1/Parkin-mediated mitophagy is activated in cisplatin nephrotoxicity to protect against kidney injury. Cell Death Dis 2018; 9:1113. [PMID: 30385753 PMCID: PMC6212494 DOI: 10.1038/s41419-018-1152-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022]
Abstract
Cisplatin is a widely used chemotherapeutic drug with notorious toxicity in the kidneys, which involves mitochondrial dysfunction and damage in renal tubular cells. Mitophagy is a form of selective autophagy that removes damaged or dysfunctional mitochondria to maintain cellular homeostasis. In this study, we have used mouse and cell models to examine the role and regulation of mitophagy in cisplatin nephrotoxicity. Cisplatin treatment was associated with the activation of autophagy and mitophagy. Rapamycin, a pharmacological inhibitor of mTOR, stimulated autophagy and mitophagy, and alleviated the development of cisplatin nephrotoxicity. PINK1 and Parkin were increased in kidney tissues during cisplatin treatment of mice. In PINK1 or Parkin gene knockout mouse models, both basal and cisplatin-induced mitophagy in kidneys were defective. Compared with wild-type littermates, PINK1 and Parkin knockout mice showed more severe renal functional loss, tissue damage, and apoptosis during cisplatin treatment. The results suggest that PINK1/Parkin-mediated mitophagy is activated in cisplatin nephrotoxicity and has a protective role against kidney injury.
Collapse
Affiliation(s)
- Ying Wang
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Juan Cai
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Dongshan Zhang
- Department of Emergency Medicine, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Zhuohua Zhang
- Institute of Precision Medicine, Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China. .,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|