1
|
Singh A, Singh L, Dalal D. Neuroprotective potential of hispidulin and diosmin: a review of molecular mechanisms. Metab Brain Dis 2025; 40:188. [PMID: 40257619 DOI: 10.1007/s11011-025-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Flavonoids are an important class of natural products, particularly, belong to a class of plant secondary metabolites having a polyphenolic structure. They are widely found in fruits, vegetables, and certain beverages. Hispidulin and diosmin are naturally occurring flavonoids recognized for their potential health benefits, such as antioxidant, anti-inflammatory, and neuroprotective properties. Hispidulin is present in several plants, including Arnica montana, Salvia officinalis (sage), and Eupatorium arnottianum. Diosmin is mainly extracted from citrus fruits like lemons and oranges and can also be synthesized from hesperidin, another flavonoid found in citrus fruits. Neurodegenerative diseases are characterized by complex signaling pathways that contribute to neuronal deterioration. The JAK/STAT pathway is involved in inflammatory responses, while the NF-κB/NLRP3 pathway is associated with metabolic stress and inflammation, both facilitating neurodegeneration. Conversely, the AMPK/pGSK3β pathway is crucial for neuroprotection, regulating cellular responses to oxidative stress and promoting neuronal survival. Additionally, the BACE/Aβ pathway exacerbates neuronal damage by triggering inflammatory and oxidative stress responses, highlighting critical targets for therapeutic strategies. Hispidulin and diosmin have emerged as promising agents in the modulation of mediators involved in neuroinflammation and neurodegenerative diseases. Oxidative stress and inflammatory pathways, including those driven by Aβ/BACE1 and JAK/STAT signaling, are central to neuronal damage and disease progression. Recent studies highlight that hispidulin and diosmin exhibit notable neuroprotective effects by targeting these mediators. Hispidulin has been shown to impact key inflammatory cytokines and adhesion molecules, while diosmin influences proinflammatory cytokine production and inflammasome activation. Both compounds offer potential therapeutic benefits by modulating crucial mediators linked to neuroinflammation and neurodegeneration. This review article is designed to explore the intricate mechanistic interplay underlying the neuroprotective effects of hispidulin and diosmin.
Collapse
Affiliation(s)
- Anish Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Diksha Dalal
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
2
|
Wang Y, Ye X, Su W, Yan C, Pan H, Wang X, Shao S. Diosmin ameliorates inflammation, apoptosis and activates PI3K/AKT pathway in Alzheimer's disease rats. Metab Brain Dis 2024; 39:1405-1415. [PMID: 39105973 DOI: 10.1007/s11011-024-01388-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/11/2024] [Indexed: 08/07/2024]
Abstract
Alzheimer's disease (AD), a prevalent cognitive disorder among the elderly, is frequently linked to the abnormal accumulation of myloid-β (Aβ), which is mainly as a result of neuronal death and inflammation. Diosmin, a flavonoid, is considered a potential drug for the treatment of AD. Our study aimed to uncover the molecular mechanism of diosmin in AD therapy. Here, rats were randomly divided into three groups: control, Aβ25-35, and Aβ25-35 + diosmin groups. AD model rats were induced by Aβ25-35 intraventricular injection, meanwhile 50 mg/kg diosmin was orally administered for 6-week intervention. Morris water maze test assessed learning and memory abilities. Hippocampal neuronal damage was determined by HE, Nissl, and TUNEL staining. These assays indicate that diosmin improves cognitive dysfunction and reduces hippocampal neuronal loss and apoptosis. Western blot showed that diosmin reduced Bax (1.21 ± 0.12) and cleaved caspase-3 (1.27 ± 0.12) expression, and increased Bcl-2 (0.70 ± 0.06), p-PI3K (0.71 ± 0.08), and p-AKT (0.96 ± 0.10) in the hippocampus. ELISA indicated diosmin reduces IL-1β, IL-6, and TNF-α levels, suggesting anti-inflammation effect. These results suggest that diosmin inhibits neuronal apoptosis and neuroinflammatory responses to improve cognitive dysfunction in AD rats, possibly related to upregulation of the PI3K/AKT pathway, providing a scientific basis for its use in AD treatment.
Collapse
Affiliation(s)
- Yanbo Wang
- Department of Neurology, the Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, 310000, China
| | - Xiaojun Ye
- Department of Neurology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Wenwen Su
- Department of Internal Medicine, CiXi Seventh People's Hospital, Ningbo, Zhejiang, 315000, China
| | - Ci Yan
- Departments of Psychiatry, Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China
| | - Haiyan Pan
- Department of Endocrinology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, 310000, China
| | - Xiaowei Wang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, 310000, China
| | - Sen Shao
- Department of Neurology, Xixi Hospital of Hangzhou Affiliated to Zhejiang University School of Medicine, No. 2, Hengbu Street, Hangzhou, Zhejiang, 310023, China.
| |
Collapse
|
3
|
Kamal N, Abdallah MS, Abdel Wahed E, Sabri NA, Fahmy SF. Evaluation of the Effect of Loratadine versus Diosmin/Hesperidin Combination on Vinca Alkaloids-Induced Neuropathy: A Randomized Controlled Clinical Trial. Pharmaceuticals (Basel) 2024; 17:609. [PMID: 38794179 PMCID: PMC11124025 DOI: 10.3390/ph17050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Neurological injury is a crucial problem that interferes with the therapeutic use of vinca alkaloids as well as the quality of patient life. This study was conducted to assess the impact of using loratadine or diosmin/hesperidin on neuropathy induced by vinca alkaloids. Patients were randomized into one of three groups as follows: group 1 was the control group, group 2 received 450 mg diosmin and 50 mg hesperidin combination orally twice daily, and group 3 received loratadine 10 mg orally once daily. Subjective scores (numeric pain rating scale, douleur neuropathique 4, and functional assessment of cancer therapy/gynecologic oncology group-neurotoxicity (FACT/GOG-Ntx) scores), neuroinflammation biomarkers, adverse drug effects, quality of life, and response to chemotherapy were compared among the three groups. Both diosmin/hesperidin and loratadine improved the results of the neurotoxicity subscale in the FACT/GOG-Ntx score (p < 0.001, p < 0.01 respectively) and ameliorated the upsurge in neuroinflammation serum biomarkers. They also reduced the incidence and timing of paresthesia (p = 0.001 and p < 0.001, respectively) and dysuria occurrence (p = 0.042). Both loratadine and diosmin/hesperidin attenuated the intensity of acute neuropathy triggered by vinca alkaloids. Furthermore, they did not increase the frequency of adverse effects or interfere with the treatment response.
Collapse
Affiliation(s)
- Noha Kamal
- Clinical Pharmacy Department, Faculty of Pharmacy, University of Sadat City (USC), Sadat City 32897, Egypt;
| | - Mahmoud S. Abdallah
- Clinical Pharmacy Department, Faculty of Pharmacy, University of Sadat City (USC), Sadat City 32897, Egypt;
- Department of PharmD, Faculty of Pharmacy, Jadara University, Irbid 21110, Jordan
| | - Essam Abdel Wahed
- Hematology and Bone Marrow Transplantation Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Nagwa A. Sabri
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Cairo 11566, Egypt; (N.A.S.); (S.F.F.)
| | - Sarah Farid Fahmy
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Cairo 11566, Egypt; (N.A.S.); (S.F.F.)
| |
Collapse
|
4
|
Ma H, Yang W, Li Y, Li J, Yang X, Chen Y, Ma Y, Sun D, Sun H. Effects of sodium arsenite exposure on behavior, ultrastructure and gene expression of brain in adult zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116107. [PMID: 38382348 DOI: 10.1016/j.ecoenv.2024.116107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Arsenic, a common metal-like substance, has been demonstrated to pose potential health hazards and induce behavioral changes in humans and rodents. However, the chronic neurotoxic effects of arsenic on aquatic animals are still not fully understood. This study aimed to investigate the effects of arsenic exposure on adult zebrafish by subjecting 3-month-old zebrafish to three different sodium arsenite water concentrations: 0 μg/L (control group), 50 μg/L, and 500 μg/L, over a period of 30 days. To assess the risk associated with arsenic exposure in the aquatic environment, behavior analysis, transmission electron microscopy techniques, and quantitative real-time PCR were employed. The behavior of adult zebrafish was evaluated using six distinct tests: the mirror biting test, shoaling test, novel tank test, social preference test, social recognition test, and T maze. Following the behavioral tests, the brains of zebrafish were dissected and collected for ultrastructural examination and gene expression analysis. The results revealed that sodium arsenite exposure led to a significant reduction in aggression, cohesion, social ability, social cognition ability, learning, and memory capacity of zebrafish. Furthermore, ultrastructure and genes regulating behavior in the zebrafish brain were adversely affected by sodium arsenite exposure.
Collapse
Affiliation(s)
- Hao Ma
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| | - Wenjing Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| | - Yang Li
- The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu Distinct, Nanchang, Jiangxi 330006, China.
| | - Jing Li
- Department of Electron Microscopy Center, Faculty of Basic Medical Science, Harbin Medical University, Harbin, China.
| | - Xiyue Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| | - Yunyan Chen
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China.
| | - Yifan Ma
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China.
| | - Dianjun Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| | - Hongna Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| |
Collapse
|
5
|
Yaribeygi H, Hemmati MA, Nasimi F, Pakdel R, Jamialahmadi T, Sahebkar A. Empagliflozin alleviates diabetes-induced cognitive impairments by lowering nicotinamide adenine dinucleotide phosphate oxidase-4 expression and potentiating the antioxidant defense system in brain tissue of diabetic rats. Behav Brain Res 2024; 460:114830. [PMID: 38141785 DOI: 10.1016/j.bbr.2023.114830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Diabetes-induced cognitive impairment is a major challenge in patients with uncontrolled diabetes mellitus. It has a complicated pathophysiology, but the role of oxidative stress is central. Therefore, the use of antidiabetic drugs with extra-glycemic effects that reduce oxidative damage may be a promising treatment option. METHODS Male Wistar rats were randomly divided into four groups as normal, normal treated, diabetic and diabetic treated (n = 8 per group). Type 1 diabetes was induced by a single intraperitoneal dose of streptozotocin (STZ) (40 mg/kg). Two treatment groups received empagliflozin for 5 weeks (20 mg/kg/po). Cognitive ability was evaluated using open field, Elevated Plus Maze (EPM) and the Morris Water Maze (MWM) tests at study completion. Blood and brain tissue samples were collected - and analysis for malondialdehyde (MDA) and glutathione (GLT) content and catalase (CAT) and superoxide dismutase (SOD) enzyme activity were performed. Additionally, expression of nicotinamide adenine dinucleotide phosphate oxidase-4 (Nox-4) enzyme in brain tissue was analyzed using RT-PCR. RESULTS STZ increased blood glucose and induced diabetes with oxidative stress by lowering the antioxidant system potency and increasing Nox-4 expression after 5-weeks in brain tissue accompanied by reduction in cognitive performance. Also, diabetes induced anxiety-like behavior and impaired spatial memory in MWM, EPM and open field tests. However, empagliflozin reversed these changes, improving SOD and CAT activity, GLT content and reducing Nox-4 expression and MDA concentration in brain tissue while improving cognitive ability. It reduced anxiety and depression-related activities. It also improved spatial memory in MWM test. CONCLUSION Uncontrolled diabetes negatively impacts mental function and impairs learning and cognitive performance via oxidative stress induction, the Nox-4 enzyme playing a central role. Empagliflozin reverses these effects, improving cognitive ability via promoting the anti-oxidative system and damping Nox-4 free radical generator enzyme expression. Therefore, empagliflozin is a promising treatment, providing both antidiabetic and extra-glycemic benefits for improving brain function in the diabetic milieu.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | | | - Fatemeh Nasimi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Roghayeh Pakdel
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Vázquez Cervantes GI, González Esquivel DF, Ramírez Ortega D, Blanco Ayala T, Ramos Chávez LA, López-López HE, Salazar A, Flores I, Pineda B, Gómez-Manzo S, Pérez de la Cruz V. Mechanisms Associated with Cognitive and Behavioral Impairment Induced by Arsenic Exposure. Cells 2023; 12:2537. [PMID: 37947615 PMCID: PMC10649068 DOI: 10.3390/cells12212537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Arsenic (As) is a metalloid naturally present in the environment, in food, water, soil, and air; however, its chronic exposure, even with low doses, represents a public health concern. For a long time, As was used as a pigment, pesticide, wood preservative, and for medical applications; its industrial use has recently decreased or has been discontinued due to its toxicity. Due to its versatile applications and distribution, there is a wide spectrum of human As exposure sources, mainly contaminated drinking water. The fact that As is present in drinking water implies chronic human exposure to this metalloid; it has become a worldwide health problem, since over 200 million people live where As levels exceed safe ranges. Many health problems have been associated with As chronic exposure including cancer, cardiovascular diseases, gastrointestinal disturbances, and brain dysfunctions. Because As can cross the blood-brain barrier (BBB), the brain represents a target organ where this metalloid can exert its long-term toxic effects. Many mechanisms of As neurotoxicity have been described: oxidative stress, inflammation, DNA damage, and mitochondrial dysfunction; all of them can converge, thus leading to impaired cellular functions, cell death, and in consequence, long-term detrimental effects. Here, we provide a current overview of As toxicity and integrated the global mechanisms involved in cognitive and behavioral impairment induced by As exposure show experimental strategies against its neurotoxicity.
Collapse
Affiliation(s)
- Gustavo Ignacio Vázquez Cervantes
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Dinora Fabiola González Esquivel
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Daniela Ramírez Ortega
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Tonali Blanco Ayala
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Lucio Antonio Ramos Chávez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Humberto Emanuel López-López
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Alelí Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Itamar Flores
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, México City 04530, Mexico;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| |
Collapse
|
7
|
Shayan M, Barangi S, Hosseinzadeh H, Mehri S. The protective effect of natural or chemical compounds against arsenic-induced neurotoxicity: Cellular and molecular mechanisms. Food Chem Toxicol 2023; 175:113691. [PMID: 36871878 DOI: 10.1016/j.fct.2023.113691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Arsenic is a notorious metalloid that exists in the earth's crust and is considered toxic for humans and the environment. Both cancerous and non-cancerous complications are possible after arsenic exposure. Target organs include the liver, lungs, kidney, heart, and brain. Arsenic-induced neurotoxicity, the main focus of our study, can occur in central and peripheral nervous systems. Symptoms can develop in a few hours, weeks, or years depending on the quantity of arsenic and the duration of exposure. In this review, we aimed to gather all the compounds, natural and chemical, that have been studied as protective agents in cellular, animal, and human reports. Oxidative stress, apoptosis, and inflammation are frequently described as destructive mechanisms in heavy metal toxicity. Moreover, reduced activity of acetylcholinesterase, the altered release of monoamine neurotransmitters, down-regulation of N-methyl-D-aspartate receptors, and decreased brain-derived neurotrophic factor are important underlying mechanisms of arsenic-induced neurotoxicity. As for neuroprotection, though some compounds have yet limited data, there are others, such as curcumin, resveratrol, taurine, or melatonin which have been studied more deeply and might be closer to a reliable protective agent. We collected the available information on all protective agents and the mechanisms by which they fight against arsenic-induced neurotoxicity.
Collapse
Affiliation(s)
- Mersedeh Shayan
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Barangi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Gerges SH, Wahdan SA, Elsherbiny DA, El-Demerdash E. Pharmacology of Diosmin, a Citrus Flavone Glycoside: An Updated Review. Eur J Drug Metab Pharmacokinet 2022; 47:1-18. [PMID: 34687440 DOI: 10.1007/s13318-021-00731-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 12/16/2022]
Abstract
Flavonoids are phytochemicals that are well known for their beneficial pharmacological properties. Diosmin is a flavone glycoside derived from hesperidin, a flavanone abundantly found in citrus fruits. Daflon is an oral phlebotonic flavonoid combination containing diosmin and hesperidin (9:1) that is commonly used for the management of blood vessel disorders. After oral administration, diosmin is converted to diosmetin, which is subsequently absorbed and esterified into glucuronide conjugates that are excreted in the urine. Pharmacological effects of diosmin have been investigated in several in vitro and in vivo studies, and it was found to possess anti-inflammatory, antioxidant, antidiabetic, antihyperlipidemic, and antifibrotic effects in different disease models. Diosmin also demonstrated multiple desirable properties in several clinical studies. Moreover, toxicological studies showed that diosmin has a favorable safety profile. Accordingly, diosmin is a potential effective and safe treatment for many diseases. However, diosmin exhibits inhibitory effects on different metabolic enzymes. This encourages the investigation of its potential therapeutic effect and safety in different diseases in clinical trials, while taking potential interactions into consideration.
Collapse
Affiliation(s)
- Samar H Gerges
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, 11566, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, 11566, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, 11566, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
9
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|