1
|
Feng Q, Li Q, Zhou H, Wang Z, Lin C, Jiang Z, Liu T, Wang D. CRISPR technology in human diseases. MedComm (Beijing) 2024; 5:e672. [PMID: 39081515 PMCID: PMC11286548 DOI: 10.1002/mco2.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Gene editing is a growing gene engineering technique that allows accurate editing of a broad spectrum of gene-regulated diseases to achieve curative treatment and also has the potential to be used as an adjunct to the conventional treatment of diseases. Gene editing technology, mainly based on clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein systems, which is capable of generating genetic modifications in somatic cells, provides a promising new strategy for gene therapy for a wide range of human diseases. Currently, gene editing technology shows great application prospects in a variety of human diseases, not only in therapeutic potential but also in the construction of animal models of human diseases. This paper describes the application of gene editing technology in hematological diseases, solid tumors, immune disorders, ophthalmological diseases, and metabolic diseases; focuses on the therapeutic strategies of gene editing technology in sickle cell disease; provides an overview of the role of gene editing technology in the construction of animal models of human diseases; and discusses the limitations of gene editing technology in the treatment of diseases, which is intended to provide an important reference for the applications of gene editing technology in the human disease.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Qirong Li
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Hengzong Zhou
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Zhan Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Chao Lin
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Ziping Jiang
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Tianjia Liu
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
2
|
Miao J, Kang L, Lan T, Wang J, Wu S, Jia Y, Xue X, Guo H, Wang P, Li Y. Identification of optimal reference genes in golden Syrian hamster with ethanol- and palmitoleic acid-induced acute pancreatitis using quantitative real-time polymerase chain reaction. Animal Model Exp Med 2023; 6:609-618. [PMID: 37202901 PMCID: PMC10757205 DOI: 10.1002/ame2.12321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/28/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is a severe disorder that leads to high morbidity and mortality. Appropriate reference genes are important for gene analysis in AP. This study sought to study the expression stability of several reference genes in the golden Syrian hamster, a model of AP. METHODS AP was induced in golden Syrian hamster by intraperitoneal injection of ethanol (1.35 g/kg) and palmitoleic acid (2 mg/kg). The expression of candidate genes, including Actb, Gapdh, Eef2, Ywhaz, Rps18, Hprt1, Tubb, Rpl13a, Nono, and B2m, in hamster pancreas at different time points (1, 3, 6, 9, and 24 h) posttreatment was analyzed using quantitative polymerase chain reaction. The expression stability of these genes was calculated using BestKeeper, Comprehensive Delta CT, NormFinder, and geNorm algorithms and RefFinder software. RESULTS Our results show that the expression of these reference genes fluctuated during AP, of which Ywhaz and Gapdh were the most stable genes, whereas Tubb, Eef2, and Actb were the least stable genes. Furthermore, these genes were used to normalize the expression of TNF-α messenger ribonucleic acid in inflamed pancreas. CONCLUSIONS In conclusion, Ywhaz and Gapdh were suitable reference genes for gene expression analysis in AP induced in Syrian hamster.
Collapse
Affiliation(s)
- Jinxin Miao
- Academy of Chinese Medicine ScienceHenan University of Chinese MedicineZhengzhouChina
| | - Le Kang
- Academy of Chinese Medicine ScienceHenan University of Chinese MedicineZhengzhouChina
| | - Tianfeng Lan
- Sino‐British Research Centre for Molecular Oncology, National Center for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Jianyao Wang
- Sino‐British Research Centre for Molecular Oncology, National Center for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Siqing Wu
- Academy of Chinese Medicine ScienceHenan University of Chinese MedicineZhengzhouChina
| | - Yifan Jia
- Academy of Chinese Medicine ScienceHenan University of Chinese MedicineZhengzhouChina
| | - Xia Xue
- Henan Key Laboratory of Helicobacter pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research CenterThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Haoran Guo
- Sino‐British Research Centre for Molecular Oncology, National Center for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Pengju Wang
- Sino‐British Research Centre for Molecular Oncology, National Center for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Yan Li
- Academy of Chinese Medicine ScienceHenan University of Chinese MedicineZhengzhouChina
| |
Collapse
|
3
|
Miao J, Lan T, Guo H, Wang J, Zhang G, Wang Z, Yang P, Li H, Zhang C, Wang Y, Li X, Miao M. Characterization of SHARPIN knockout Syrian hamsters developed using CRISPR/Cas9 system. Animal Model Exp Med 2023; 6:489-498. [PMID: 36097701 PMCID: PMC10614123 DOI: 10.1002/ame2.12265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/24/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND SHARPIN (SHANK-associated RH domain interactor) is a component of the linear ubiquitination complex that regulates the NF-κB signaling pathway. To better understand the function of SHARPIN, we sought to establish a novel genetically engineered Syrian hamster with SHARPIN disruption using the CRISPR/Cas9 system. METHODS A single-guide ribonucleic acid targeting exon 1 of SHARPIN gene was designed and constructed. The zygotes generated by cytoplasmic injection of the Cas9/gRNA ribonucleoprotein were transferred into pseudopregnant hamsters. Neonatal mutants were identified by genotyping. SHARPIN protein expression was detected using Western blotting assay. Splenic, mesenteric lymph nodes (MLNs), and thymic weights were measured, and organ coefficients were calculated. Histopathological examination of the spleen, liver, lung, small intestine, and esophagus was performed independently by a pathologist. The expression of lymphocytic markers and cytokines was evaluated using reverse transcriptase-quantitative polymerase chain reaction. RESULTS All the offspring harbored germline-transmitted SHARPIN mutations. Compared with wild-type hamsters, SHARPIN protein was undetectable in SHARPIN-/- hamsters. Spleen enlargement and splenic coefficient elevation were spotted in SHARPIN-/- hamsters, with the descent of MLNs and thymuses. Further, eosinophil infiltration and structural alteration in spleens, livers, lungs, small intestines, and esophagi were obvious after the deletion of SHARPIN. Notably, the expression of CD94 and CD22 was downregulated in the spleens of knockout (KO) animals. Nonetheless, the expression of CCR3, CCL11, Il4, and Il13 was upregulated in the esophagi. The expression of NF-κB and phosphorylation of NF-κB and IκB protein significantly diminished in SHARPIN-/- animals. CONCLUSIONS A novel SHARPIN KO hamster was successfully established using the CRISPR/Cas9 system. Abnormal development of secondary lymphoid organs and eosinophil infiltration in multiple organs reveal its potential in delineating SHARPIN function and chronic inflammation.
Collapse
Affiliation(s)
- Jinxin Miao
- Academy of Chinese Medicine ScienceHenan University of Chinese MedicineZhengzhouHenanPeople's Republic of China
| | - Tianfeng Lan
- Sino‐British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouHenanPeople's Republic of China
| | - Haoran Guo
- Sino‐British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouHenanPeople's Republic of China
| | - Jianyao Wang
- Sino‐British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouHenanPeople's Republic of China
| | - Guangtao Zhang
- Department of Oncology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiPeople's Republic of China
| | - Zheng Wang
- Academy of Chinese Medicine ScienceHenan University of Chinese MedicineZhengzhouHenanPeople's Republic of China
- Sino‐British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouHenanPeople's Republic of China
| | - Panpan Yang
- Sino‐British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouHenanPeople's Republic of China
| | - Haoze Li
- Sino‐British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouHenanPeople's Republic of China
| | - Chunyang Zhang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanPeople's Republic of China
- Department of General Thoracic SurgeryHami Central HospitalHamiXinjiangPeople's Republic of China
| | - Yaohe Wang
- Sino‐British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical SciencesZhengzhou UniversityZhengzhouHenanPeople's Republic of China
- Centre for Molecular OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Xiu‐Min Li
- Department of Microbiology and Immunology and Department of OtolaryngologyNew York Medical College and School of MedicineValhallaNew YorkUSA
| | - Mingsan Miao
- Academy of Chinese Medicine ScienceHenan University of Chinese MedicineZhengzhouHenanPeople's Republic of China
| |
Collapse
|
4
|
Wen XY, Wang RY, Yu B, Yang Y, Yang J, Zhang HC. Integrating single-cell and bulk RNA sequencing to predict prognosis and immunotherapy response in prostate cancer. Sci Rep 2023; 13:15597. [PMID: 37730847 PMCID: PMC10511553 DOI: 10.1038/s41598-023-42858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023] Open
Abstract
Prostate cancer (PCa) stands as a prominent contributor to morbidity and mortality among males on a global scale. Cancer-associated fibroblasts (CAFs) are considered to be closely connected to tumour growth, invasion, and metastasis. We explored the role and characteristics of CAFs in PCa through bioinformatics analysis and built a CAFs-based risk model to predict prognostic treatment and treatment response in PCa patients. First, we downloaded the scRNA-seq data for PCa from the GEO. We extracted bulk RNA-seq data for PCa from the TCGA and GEO and adopted "ComBat" to remove batch effects. Then, we created a Seurat object for the scRNA-seq data using the package "Seurat" in R and identified CAF clusters based on the CAF-related genes (CAFRGs). Based on CAFRGs, a prognostic model was constructed by univariate Cox, LASSO, and multivariate Cox analyses. And the model was validated internally and externally by Kaplan-Meier analysis, respectively. We further performed GO and KEGG analyses of DEGs between risk groups. Besides, we investigated differences in somatic mutations between different risk groups. We explored differences in the immune microenvironment landscape and ICG expression levels in the different groups. Finally, we predicted the response to immunotherapy and the sensitivity of antitumour drugs between the different groups. We screened 4 CAF clusters and identified 463 CAFRGs in PCa scRNA-seq. We constructed a model containing 10 prognostic CAFRGs by univariate Cox, LASSO, and multivariate Cox analysis. Somatic mutation analysis revealed that TTN and TP53 were significantly more mutated in the high-risk group. Finally, we screened 31 chemotherapeutic drugs and targeted therapeutic drugs for PCa. In conclusion, we identified four clusters based on CAFs and constructed a new CAFs-based prognostic signature that could predict PCa patient prognosis and response to immunotherapy and might suggest meaningful clinical options for the treatment of PCa.
Collapse
Affiliation(s)
- Xiao Yan Wen
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, No.82, North Second Section of Second Ring Road, Chengdu, 610081, Sichuan, China
| | - Ru Yi Wang
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, No.82, North Second Section of Second Ring Road, Chengdu, 610081, Sichuan, China
| | - Bei Yu
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, No.82, North Second Section of Second Ring Road, Chengdu, 610081, Sichuan, China
| | - Yue Yang
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, No.82, North Second Section of Second Ring Road, Chengdu, 610081, Sichuan, China
| | - Jin Yang
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, No.82, North Second Section of Second Ring Road, Chengdu, 610081, Sichuan, China
| | - Han Chao Zhang
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, No.82, North Second Section of Second Ring Road, Chengdu, 610081, Sichuan, China.
- Medical College of Soochow University, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
5
|
Jia Y, Wang Y, Dunmall LSC, Lemoine NR, Wang P, Wang Y. Syrian hamster as an ideal animal model for evaluation of cancer immunotherapy. Front Immunol 2023; 14:1126969. [PMID: 36923404 PMCID: PMC10008950 DOI: 10.3389/fimmu.2023.1126969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Cancer immunotherapy (CIT) has emerged as an exciting new pillar of cancer treatment. Although benefits have been achieved in individual patients, the overall response rate is still not satisfactory. To address this, an ideal preclinical animal model for evaluating CIT is urgently needed. Syrian hamsters present similar features to humans with regard to their anatomy, physiology, and pathology. Notably, the histological features and pathological progression of tumors and the complexity of the tumor microenvironment are equivalent to the human scenario. This article reviews the current tumor models in Syrian hamster and the latest progress in their application to development of tumor treatments including immune checkpoint inhibitors, cytokines, adoptive cell therapy, cancer vaccines, and oncolytic viruses. This progress strongly advocates Syrian hamster as an ideal animal model for development and assessment of CIT for human cancer treatments. Additionally, the challenges of the Syrian hamster as an animal model for CIT are also discussed.
Collapse
Affiliation(s)
- Yangyang Jia
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanru Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Nicholas R. Lemoine
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Pengju Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
6
|
Wang Z, Cormier RT. Golden Syrian Hamster Models for Cancer Research. Cells 2022; 11:2395. [PMID: 35954238 PMCID: PMC9368453 DOI: 10.3390/cells11152395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
The golden Syrian hamster (Mesocricetus auratus) has long been a valuable rodent model of human diseases, especially infectious and metabolic diseases. Hamsters have also been valuable models of several chemically induced cancers such as the DMBA-induced oral cheek pouch cancer model. Recently, with the application of CRISPR/Cas9 genetic engineering technology, hamsters can now be gene targeted as readily as mouse models. This review describes the phenotypes of three gene-targeted knockout (KO) hamster cancer models, TP53, KCNQ1, and IL2RG. Notably, these hamster models demonstrate cancer phenotypes not observed in mouse KOs. In some cases, the cancers that arise in the KO hamster are similar to cancers that arise in humans, in contrast with KO mice that do not develop the cancers. An example is the development of aggressive acute myelogenous leukemia (AML) in TP53 KO hamsters. The review also presents a discussion of the relative strengths and weaknesses of mouse cancer models and hamster cancer models and argues that there are no perfect rodent models of cancer and that the genetically engineered hamster cancer models can complement mouse models and expand the suite of animal cancer models available for the development of new cancer therapies.
Collapse
Affiliation(s)
- Zhongde Wang
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Robert T. Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| |
Collapse
|