1
|
Charles DK, Lange MJ, Ortiz NM, Purcell S, Smith RP. A narrative review of sperm selection technology for assisted reproduction techniques. Transl Androl Urol 2024; 13:2119-2133. [PMID: 39434753 PMCID: PMC11491204 DOI: 10.21037/tau-24-195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/19/2024] [Indexed: 10/23/2024] Open
Abstract
Background and Objective In-vitro fertilization (IVF) with intracytoplasmic sperm injection (ICSI) has become increasingly prevalent even in cases without significant male factor infertility; however, stagnant live-birth rates, both nationally and internationally, have driven more research into sperm selection. To date, nothing has replaced swim-up and density-gradient preparation methods and therefore we sought to review the state of the science. Methods A PubMed search was performed between years of 1989 and 2024 for English research articles reporting data on sperm selection technology in assisted reproductive technology. Key Content and Findings IVF with ICSI is increasingly prevalent even in men with normal semen parameters. Despite technologic advances and widespread use, reproductive outcomes with ICSI have been stagnant. This market for opportunity growth has allowed for sperm selection techniques to grow exponentially with heterogeneity in utilization and a paucity of positive reproductive outcomes. Swim-up and density-gradient centrifugation remain the most utilized sperm selection techniques. Various future technologies show promise including epigenetics, sperm biomarkers and a potential role of artificial intelligence; however, more research is needed. Conclusions Given unchanged IVF success rates, sperm selection technologies hold promise to improve reproductive outcomes beyond traditional ICSI. At present, no technique has shown superiority to swim up and density centrifugation.
Collapse
Affiliation(s)
- David K. Charles
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | - Moritz J. Lange
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | - Nicolas M. Ortiz
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | - Scott Purcell
- Virginia Fertility and IVF, Charlottesville, VA, USA
- PS Fertility, Charlottesville, VA, USA
| | - Ryan P. Smith
- Department of Urology, University of Virginia, Charlottesville, VA, USA
- PS Fertility, Charlottesville, VA, USA
| |
Collapse
|
2
|
Fraser B, Peters AE, Sutherland JM, Liang M, Rebourcet D, Nixon B, Aitken RJ. Biocompatible Nanomaterials as an Emerging Technology in Reproductive Health; a Focus on the Male. Front Physiol 2021; 12:753686. [PMID: 34858208 PMCID: PMC8632065 DOI: 10.3389/fphys.2021.753686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
A growing body of research has confirmed that nanoparticle (NP) systems can enhance delivery of therapeutic and imaging agents as well as prevent potentially damaging systemic exposure to these agents by modifying the kinetics of their release. With a wide choice of NP materials possessing different properties and surface modification options with unique targeting agents, bespoke nanosystems have been developed for applications varying from cancer therapeutics and genetic modification to cell imaging. Although there remain many challenges for the clinical application of nanoparticles, including toxicity within the reproductive system, some of these may be overcome with the recent development of biodegradable nanoparticles that offer increased biocompatibility. In recognition of this potential, this review seeks to present recent NP research with a focus on the exciting possibilities posed by the application of biocompatible nanomaterials within the fields of male reproductive medicine, health, and research.
Collapse
Affiliation(s)
- Barbara Fraser
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alexandra E Peters
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Jessie M Sutherland
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Mingtao Liang
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Diane Rebourcet
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Robert J Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|