1
|
Wang M, Li J, Geng M, Yang Z, Xi A, Yu Y, Liu B, Tay FR, Gou Y. Mussel-inspired bifunctional coating for long-term stability of oral implants. Acta Biomater 2024; 188:138-156. [PMID: 39299623 DOI: 10.1016/j.actbio.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Peri-implantitis and osseointegration failure present considerable challenges to the prolonged stability of oral implants. To address these issues, there is an escalating demand for a resilient implant surface coating that seamlessly integrates antimicrobial features to combat bacteria-induced peri‑implantitis, and osteogenic properties to promote bone formation. In the present study, a bio-inspired poly(amidoamine) dendrimer (DA-PAMAM-NH2) is synthesized by utilizing a mussel protein (DA) known for its strong adherence to various materials. Conjugating DA with PAMAM-NH2, inherently endowed with antibacterial and osteogenic properties, results in a robust and multifunctional coating. Robust adhesion between DA-PAMAM-NH2 and the titanium alloy surface is identified using confocal laser scanning microscopy (CLSM) and attenuated total reflectance-infrared (ATR-IR) spectroscopy. Following a four-week immersion of the coated titanium alloy surface in simulated body fluid (SBF), the antimicrobial activity and superior osteogenesis of the DA-PAMAM-NH2-coated surface remain stable. In contrast, the bifunctional effects of the PAMAM-NH2-coated surface diminish after the same immersion period. In vivo animal experiments validate the enduring antimicrobial and osteogenic properties of DA-PAMAM-NH2-coated titanium alloy implants, significantly enhancing the long-term stability of the implants. This innovative coating holds promise for addressing the multifaceted challenges associated with peri‑implantitis and osseointegration failure in titanium-based implants. STATEMENT OF SIGNIFICANCE: Prolonged stability of oral implants remains a clinically-significant challenge. Peri-implantitis and osseointegration failure are two important contributors to the poor stability of oral implants. The present study developed a mussel-bioinspired poly(amidoamine) dendrimer (DA-PAMAM-NH2) for a resilient implant surface coating that seamlessly integrates antimicrobial features to combat bacteria-induced peri‑implantitis, and osteogenic properties to promote bone formation to extend the longevity of oral implants.
Collapse
Affiliation(s)
- Mengmeng Wang
- School/Hospital of Stomatology, Lanzhou University, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou, 730000, Gansu Province, China
| | - Jie Li
- School/Hospital of Stomatology, Lanzhou University, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou, 730000, Gansu Province, China
| | - Mengqian Geng
- School/Hospital of Stomatology, Lanzhou University, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou, 730000, Gansu Province, China
| | - Zhen Yang
- School/Hospital of Stomatology, Lanzhou University, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou, 730000, Gansu Province, China
| | - Aiwen Xi
- School/Hospital of Stomatology, Lanzhou University, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou, 730000, Gansu Province, China
| | - Yingying Yu
- School/Hospital of Stomatology, Lanzhou University, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou, 730000, Gansu Province, China
| | - Bin Liu
- School/Hospital of Stomatology, Lanzhou University, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou, 730000, Gansu Province, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| | - Yaping Gou
- School/Hospital of Stomatology, Lanzhou University, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
2
|
Shash YH. Mandibular biomechanics rehabilitated with different prosthetic restorations under normal and impact loading scenarios. BMC Oral Health 2024; 24:946. [PMID: 39143630 PMCID: PMC11325811 DOI: 10.1186/s12903-024-04681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Restorative treatment options for edentulous patients range from traditional dentures to fixed restorations. The proper selection of materials greatly influences the longevity and stability of fixed restorations. Most prosthetic parts are frequently fabricated from titanium. Ceramics (e.g. zirconia) and polymers (e.g. PEEK and BIOHPP) have recently been included in these fabrications. The mandibular movement produces complex patterns of stress and strain. Mandibular fractures may result from these stresses and strains exceeding the critical limits because of the impact force from falls or accidents. Therefore, it is necessary to evaluate the biomechanical behavior of the edentulous mandible with different restorations under different loading situations. OBJECTIVE This study analyzes the biomechanical behavior of mandibles after four prosthetic restorations for rehabilitation under normal and impact loading scenarios. MATERIAL AND METHODS The mandibular model was constructed with a fixed restoration, which was simulated using various materials (e.g. Titanium, Zirconia & BIOHPP), under frontal bite force, maximum intercuspation, and chin impact force. From the extraction of tensile and compressive stresses and strains, as well as the total deformation of mandible segments, the biomechanical behavior and clinical situations were studied. RESULTS Under frontal bite, the anterior body exhibited the highest tensile (60.34 MPa) and compressive (108.81 MPa) stresses using restoration 4, while the condyles and angles had the lowest tensile (7.12 MPa) and compressive (12.67 MPa) stresses using restoration 3. Under maximum intercuspation, the highest tensile (40.02 MPa) and compressive (98.87 MPa) stresses were generated on the anterior body of the cortical bone using restoration 4. Additionally, the lowest tensile (7.7 MPa) and compressive (10.08 MPa) stresses were generated on the condyles and angles, respectively, using restoration 3. Under chin impact, the highest tensile (374.57 MPa) and compressive (387.3 MPa) stresses were generated on the anterior body using restoration 4. Additionally, the lowest tensile (0.65 MPa) and compressive (0.57 MPa) stresses were generated on the coronoid processes using restoration 3. For all loading scenarios, the anterior body of the mandible had the highest stress and strain values compared with the other segments. Compared to the traditional titanium restoration.2, restoration.1(zirconia) increases the tensile and compressive stresses and strains on the mandibular segments, in contrast to restoration.3 (BIOHPP). In addition, zirconia implants exhibited higher displacements than the other implants. CONCLUSION In the normal loading scenario, the tensile and compressive stresses and strains on the mandible were within the allowable limits when all restorations were used. Under the chin impact loading scenario, the anterior body of the mandible was damaged by restorations 1 and 4.
Collapse
Affiliation(s)
- Yomna H Shash
- Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.
| |
Collapse
|
3
|
Zatkalíková V, Uhríčik M, Markovičová L, Pastierovičová L, Kuchariková L. The Effect of Sensitization on the Susceptibility of AISI 316L Biomaterial to Pitting Corrosion. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5714. [PMID: 37630005 PMCID: PMC10456642 DOI: 10.3390/ma16165714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
Due to the combination of high corrosion resistance and suitable mechanical properties, AISI 316L stainless steel is extensively used as the biomaterial for surgical implants. However, heat exposure in inappropriate temperatures can cause its sensitization accompanied by chromium depletion along the grain boundaries. This study deals with an assessment of the susceptibility of sensitized AISI 316L biomaterial to pitting under conditions simulating the internal environment of the human body (Hank's balanced salt solution, 37 ± 0.5 °C). The resistance to pitting corrosion is tested by the potentiodynamic polarization and by the 50-day exposure immersion test. Corrosion damage after the exposure immersion test is evaluated in the specimens' cross-sections by optical microscope and SEM. Despite passive behavior in potentiodynamic polarization and shallow, slight corrosion damage observed after exposure, the sensitized AISI 316L biomaterial could represent a risk, especially in long-term implantation even after the chemical removal of high-temperature oxides.
Collapse
Affiliation(s)
- Viera Zatkalíková
- Department of Materials Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia; (M.U.); (L.M.); (L.P.); (L.K.)
| | | | | | | | | |
Collapse
|
4
|
Shash YH, El-Wakad MT, El-Dosoky MAA, Dohiem MM. Evaluation of stresses on mandible bone and prosthetic parts in fixed prosthesis by utilizing CFR-PEEK, PEKK and PEEK frameworks. Sci Rep 2023; 13:11542. [PMID: 37460592 DOI: 10.1038/s41598-023-38288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Fixed prostheses are appropriate treatment solutions for edentulous patients. In fixed prostheses, following "All on four", titanium frameworks are commonly used to support the implants. However, the limitations of titanium have prompted researchers to search for alternative materials (e.g. polymers). This study applied finite element investigation to evaluate the stress distribution in the parts of fixed prosthesis and the surrounding bone tissue, using polymeric frameworks in place of titanium, and different densities of spongy bone. As, the success of fixed prosthesis was predicted to be influenced also by bone quality, particularly spongy bone density. Fixed prosthesis was constructed on edentulous mandible, then different frameworks (CFR-PEEK 60%, CFR-PEEK 30%, PEKK, and PEEK) were stimulated instead of titanium, under 300N unilateral and bilateral forces. Three densities of spongy bone were stimulated which are normal, low and high. The choice of framework material depended on the density of spongy bone. Moreover, PEEK framework showed the lowest stress values on bone tissues and the highest stress values on mucosa. All frameworks could be used in the fixed prosthesis, in the cases of normal and high densities of spongy bone. In low-density case, soft frameworks (PEKK and PEEK) were recommended to reduce the stresses generated on bone tissues.
Collapse
Affiliation(s)
- Yomna H Shash
- Department of Biomedical Engineering, Helwan University, Cairo, Egypt.
| | - Mohamed T El-Wakad
- Faculty of Engineering and Technology, Future University in Egypt, Cairo, Egypt
| | | | - Mohamed M Dohiem
- Department of Prosthodontics, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Omega Phase Formation and Mechanical Properties of Ti–1.5 wt.% Mo and Ti–15 wt.% Mo Alloys after High-Pressure Torsion. Processes (Basel) 2023. [DOI: 10.3390/pr11010221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The paper analyzes the effect of severe plastic deformation by the high-pressure torsion (HPT) on phase transformations, in particular, on the formation of the ω-phase, and on mechanical properties, such as hardness and Young’s modulus, in Ti alloys with 1.5 and 15 wt.% Mo. Both alloys were pre-annealed at 1000 °C for 24 h and quenched. The microstructure of the initial Ti–1.5 wt.% Mo alloy consisted of the α-phase and α’-martensite, and the initial Ti–15 wt.% Mo alloy contained polycrystalline β solid solution. The hardness tests of the samples were carried out under the load of 10 and 200 mN. The annealed alloys were subjected to HPT, and the micro- and nanohardness of both deformed samples increased up to ~1 GPa compared to their initial state. It turned out that the values of hardness (H) and Young’s modulus (E) depend on the applied load on the indenter: the higher the applied load, the lower H and higher E. It was also found that the HPT leads to the 30% increase in E for an alloy with 1.5 wt.% Mo and to the 9% decrease in E for the alloy with 15 wt.% Mo. Such a difference in the behavior of the Young’s modulus is associated with phase transformations caused by the HPT.
Collapse
|
6
|
Evaluation of stress and strain on mandible caused using “All-on-Four” system from PEEK in hybrid prosthesis: finite-element analysis. Odontology 2022:10.1007/s10266-022-00771-z. [DOI: 10.1007/s10266-022-00771-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022]
Abstract
AbstractHybrid prostheses have recently been used as suitable treatment alternatives for edentulous individuals to restore the mastication mechanism. These prostheses utilize “All on four” concept, in which four implants are inserted into the jaw bone, and supported by a bar. Titanium is usually used in the fabrication of “All on four” parts due to its good mechanical properties. However, it has many drawbacks including esthetic impairment, casting issues, hypersensitivity reactions, stress shielding, and incompatibility with imaging techniques. These drawbacks have prompted researchers to find alternative materials (e.g., polymers). Recently, the new polymeric material PEEK has a major role in dentistry, due to its biocompatibility, shock-absorbing ability, and good mechanical properties. This work used the finite-element method to conduct stress–strain analysis on mandible rehabilitated with a hybrid prosthesis, using PEEK in the fabrication of “All on four” parts instead of titanium, using different densities of spongy bone. As the density of spongy bone is expected to influence the choice of “All on four” fabrication material. A 300 N vertical force was applied unilaterally, bilaterally, and anteriorly to stimulate the different mastication mechanisms. The results illustrated that PEEK material reduced the stresses and strains on bone tissues and increased the mucosal stress, compared to titanium. Consequently, this material was recommended to be used in the fabrication of “All on four” parts, especially in the low-density model. However, further research on PEEK implants and abutments is required in near future.
Collapse
|
7
|
Finite-Element Analysis of the Effect of Utilizing Various Material Assemblies in “All on Four” on the Stresses on Mandible Bone and Prosthetic Parts. INT J POLYM SCI 2022. [DOI: 10.1155/2022/4520250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background. Fixed prostheses often utilize the “All-on-four” technique, in which four implants are inserted into the jaw bone, and a framework supports them. Titanium is usually used in the fabrication of “All-on-four” parts, due to its superior mechanical properties; however, it has drawbacks such as aesthetic impairment, casting issues, stress shielding, and incompatibility with imaging techniques. These drawbacks have motivated researchers to find alternative materials such as polymers. Recently, the new polymeric material PEEK has a major role in most areas of dentistry, and therefore, it can represent an alternative biomaterial to overcome the drawbacks of titanium. The density of bone is expected to influence the choice of “All-on-four” materials. Purpose. This research applied finite-element investigations to evaluate the stresses on bone tissues and prosthetic parts in “All on four,” utilizing three assemblies of materials, in normal and low bone densities. These assemblies were titanium (Type 1), titanium/PEEK (Type 2), and PEEK (Type 3). Materials and Methods. A 3D Mandibular model was constructed with a fixed prosthesis, and three assemblies of materials were stimulated, under 300 N unilateral force. The von Mises stresses were computed for the prosthetic parts and mucosa, while the maximum and minimum principal stresses/strains were computed for bone tissues due to their brittle and ductile properties. Moreover, the displacements of implants were extracted to check the prosthesis stability. Results. Type 2 and Type 3 minimized the stresses on frameworks, implants, abutments, and bone tissues, however, increased the mucosal stress, in comparison to Type 1. In the low-density model, Type 3 was recommended to reduce the stresses/strains on bone tissues and decrease the implant displacement, avoiding bone failure and increasing prosthesis stability. Conclusions. The bone density influenced the choice of “All-on-four” assembly. Moreover, further research on PEEK implants and abutments is required in the future.
Collapse
|
8
|
Comparative Study of Biotin and Hydroxyapatite on Biological Properties of Composite Coating. Int J Biomater 2022; 2022:8802111. [PMID: 36199852 PMCID: PMC9529522 DOI: 10.1155/2022/8802111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/24/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
The ultimate goal of using biomaterials is to improve human health by restoring the function of natural living tissues and organs in the body. The present work aims to modify the composite coating layer properties by using two different types of bioactive reinforcing materials (biotin and hydroxyapatite) particles in different percentages (5% and 10%). Coatings were applied onto commercially pure Ti, SS 316 L, and SS 304 substrates by the dip-coating method. Characterization of samples includes microstructure observation by field emission scanning electron microscopy (FE-SEM), contact angle measurement (wettability), and MTT. The results show the addition of metallic particles (bioparticles) (hydroxyapatite particles, biotin) at 5 Vol. % improved the whole properties of composite materials. Using different particles' scale size aids to enhance the combinations in the alginate matrix producing a dual effect on composite film properties. In addition, the inclusion of metallic particles has to increase the wettability by reducing the contact angle. At the same time, MTT graphs revealed that after 3 days of exposure in MG-63 cells, 316 L SS alloys' surface following pack adhesion became more active.
Collapse
|
9
|
Wang X, Zhao W, Zhao C, Zhang W, Yan Z. Graphene coated Ti‐6Al‐4V exhibits antibacterial and antifungal properties against oral pathogens. J Prosthodont 2022. [DOI: 10.1111/jopr.13595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xu Wang
- Department of Oral Medicine Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials Beijing 100081 P.R. China
| | - Weiwei Zhao
- Department of Oral Medicine Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials Beijing 100081 P.R. China
| | - Chen Zhao
- Department of Oral Medicine Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials Beijing 100081 P.R. China
| | - Wenqing Zhang
- Department of Oral Medicine Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials Beijing 100081 P.R. China
| | - Zhimin Yan
- Department of Oral Medicine Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials Beijing 100081 P.R. China
| |
Collapse
|
10
|
Sheng X, Wang A, Wang Z, Liu H, Wang J, Li C. Advanced Surface Modification for 3D-Printed Titanium Alloy Implant Interface Functionalization. Front Bioeng Biotechnol 2022; 10:850110. [PMID: 35299643 PMCID: PMC8921557 DOI: 10.3389/fbioe.2022.850110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
With the development of three-dimensional (3D) printed technology, 3D printed alloy implants, especially titanium alloy, play a critical role in biomedical fields such as orthopedics and dentistry. However, untreated titanium alloy implants always possess a bioinert surface that prevents the interface osseointegration, which is necessary to perform surface modification to enhance its biological functions. In this article, we discuss the principles and processes of chemical, physical, and biological surface modification technologies on 3D printed titanium alloy implants in detail. Furthermore, the challenges on antibacterial, osteogenesis, and mechanical properties of 3D-printed titanium alloy implants by surface modification are summarized. Future research studies, including the combination of multiple modification technologies or the coordination of the structure and composition of the composite coating are also present. This review provides leading-edge functionalization strategies of the 3D printed titanium alloy implants.
Collapse
Affiliation(s)
- Xiao Sheng
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Ao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Chen Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| |
Collapse
|
11
|
Nanohydroxyapatite-Blasted Bioactive Surface Drives Shear-Stressed Endothelial Cell Growth and Angiogenesis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1433221. [PMID: 35252440 PMCID: PMC8890866 DOI: 10.1155/2022/1433221] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 12/22/2022]
Abstract
Nanosized crystalline hydroxyapatite coating (HAnano®) accelerates the osteointegration of dental implants which is hypothesized to drive angiogenesis. In order to test this hypothesis, we have subjected shear-stressed human umbilical vein endothelial cells (HUVECs) to a HAnano®-enriched medium, as well as to surface presenting dual acid etching (DAE) as a control. To note, the titanium implants were coated with 10 nm in diameter HA particles using the Promimic HAnano method. Our data reveals that HAnano® modulates higher expression of genes related with endothelial cell performance and viability, such as VEGF, eNOS, and AKT, and further angiogenesis in vitro by promoting endothelial cell migration. Additionally, the data shows a significant extracellular matrix (ECM) remodeling, and this finding seems developing a dual role in promoting the expression of VEGF and control endothelial cell growth during angiogenesis. Altogether, these data prompted us to further validate this phenomenon by exploring genes related with the control of cell cycle and in fact our data shows that HAnano® promotes higher expression of CDK4 gene, while p21 and p15 genes (suppressor genes) were significantly lower. In conjunction, our data shows for the first time that HAnano®-coated surfaces drive angiogenesis by stimulating a proliferative and migration phenotype of endothelial cells, and this finding opens novel comprehension about osseointegration mechanism considering nanosized hydroxyapatite coating dental implants.
Collapse
|
12
|
Bechir F, Bataga SM, Tohati A, Ungureanu E, Cotrut CM, Bechir ES, Suciu M, Vranceanu DM. Evaluation of the Behavior of Two CAD/CAM Fiber-Reinforced Composite Dental Materials by Immersion Tests. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7185. [PMID: 34885342 PMCID: PMC8658643 DOI: 10.3390/ma14237185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 01/15/2023]
Abstract
Fiber-reinforced composites are used as restorative materials for prosthetic oral rehabilitation. Gastroesophageal reflux disease (GERD) is an accustomed affection with various oral manifestations. This study aimed to evaluate the behavior of two high-performance CAD/CAM milled reinforced composites (Trinia™, TriLor) in artificial saliva at different pH levels through immersion tests, and to determine if changes in mass or surface morphology at variable pH, specific for patients affected by GERD, appear. After investigating the elemental composition and surface morphology, the specimens were immersed in Carter Brugirard artificial saliva for 21 days at different pH values (5.7, 7.6, and varying the pH from 5.7 to 3). The values of the weighed masses during the immersion tests were statistically processed in terms of mean and standard deviation. Results suggested that irrespective of the medium pH, the two composites presented a similar mass variation in the range of -0.18 (±0.01)-1.82 (±0.02) mg after immersion, suggesting their stability when in contact with artificial saliva, an aspect which was also highlighted by scanning electron microscope (SEM) analysis performed on the immersed surfaces. Novel composite biomaterials can be a proper alternative for metal alloys used for prosthetic frameworks in patients suffering from GERD.
Collapse
Affiliation(s)
- Farah Bechir
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh. Marinescu Str., 540142 Targu Mures, Romania;
| | - Simona Maria Bataga
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh. Marinescu Str., 540142 Targu Mures, Romania;
| | - Adrian Tohati
- Faculty of Dental Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh. Marinescu Str., 540142 Targu Mures, Romania;
| | - Elena Ungureanu
- Faculty of Materials Science and Engineering, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (E.U.); (C.M.C.); (D.M.V.)
| | - Cosmin Mihai Cotrut
- Faculty of Materials Science and Engineering, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (E.U.); (C.M.C.); (D.M.V.)
| | - Edwin Sever Bechir
- Faculty of Dental Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh. Marinescu Str., 540142 Targu Mures, Romania;
| | - Mircea Suciu
- Faculty of Dental Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh. Marinescu Str., 540142 Targu Mures, Romania;
| | - Diana Maria Vranceanu
- Faculty of Materials Science and Engineering, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (E.U.); (C.M.C.); (D.M.V.)
| |
Collapse
|
13
|
Innovative Coatings of Metallic Alloys Used as Bioactive Surfaces in Implantology: A Review. COATINGS 2021. [DOI: 10.3390/coatings11060649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metallic implants are widely used in the field of implantology, but there are still problems leading to implant failures due to weak osseointegration, low mechanical strength for the implant, inadequate antibacterial properties, and low patient satisfaction. Implant failure can be caused by bacterial infections and poor osteointegration. To improve the implant functionalization, many researchers focus on surface modifications to prepare the proper physical and chemical conditions able to increase biocompatibility and osteointegration between implant and bone. Improving the antibacterial performance is also a key factor to avoid the inflammation in the human body. This paper is a brief review for the types of coatings used to increase osseointegration and biocompatibility for the successful use of metal alloys in the field of implantology.
Collapse
|
14
|
Khorsandi D, Fahimipour A, Abasian P, Saber SS, Seyedi M, Ghanavati S, Ahmad A, De Stephanis AA, Taghavinezhaddilami F, Leonova A, Mohammadinejad R, Shabani M, Mazzolai B, Mattoli V, Tay FR, Makvandi P. 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications. Acta Biomater 2021; 122:26-49. [PMID: 33359299 DOI: 10.1016/j.actbio.2020.12.044] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
3D and 4D printing are cutting-edge technologies for precise and expedited manufacturing of objects ranging from plastic to metal. Recent advances in 3D and 4D printing technologies in dentistry and maxillofacial surgery enable dentists to custom design and print surgical drill guides, temporary and permanent crowns and bridges, orthodontic appliances and orthotics, implants, mouthguards for drug delivery. In the present review, different 3D printing technologies available for use in dentistry are highlighted together with a critique on the materials available for printing. Recent reports of the application of these printed platformed are highlighted to enable readers appreciate the progress in 3D/4D printing in dentistry.
Collapse
|