1
|
Clunie DA, Flanders A, Taylor A, Erickson B, Bialecki B, Brundage D, Gutman D, Prior F, Seibert JA, Perry J, Gichoya JW, Kirby J, Andriole K, Geneslaw L, Moore S, Fitzgerald TJ, Tellis W, Xiao Y, Farahani K. Report of the Medical Image De-Identification (MIDI) Task Group -- Best Practices and Recommendations. ARXIV 2025:arXiv:2303.10473v3. [PMID: 37033463 PMCID: PMC10081345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
This report addresses the technical aspects of de-identification of medical images of human subjects and biospecimens, such that re-identification risk of ethical, moral, and legal concern is sufficiently reduced to allow unrestricted public sharing for any purpose, regardless of the jurisdiction of the source and distribution sites. All medical images, regardless of the mode of acquisition, are considered, though the primary emphasis is on those with accompanying data elements, especially those encoded in formats in which the data elements are embedded, particularly Digital Imaging and Communications in Medicine (DICOM). These images include image-like objects such as Segmentations, Parametric Maps, and Radiotherapy (RT) Dose objects. The scope also includes related non-image objects, such as RT Structure Sets, Plans and Dose Volume Histograms, Structured Reports, and Presentation States. Only de-identification of publicly released data is considered, and alternative approaches to privacy preservation, such as federated learning for artificial intelligence (AI) model development, are out of scope, as are issues of privacy leakage from AI model sharing. Only technical issues of public sharing are addressed.
Collapse
|
2
|
Chang J, Hatfield B. Advancements in computer vision and pathology: Unraveling the potential of artificial intelligence for precision diagnosis and beyond. Adv Cancer Res 2024; 161:431-478. [PMID: 39032956 DOI: 10.1016/bs.acr.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The integration of computer vision into pathology through slide digitalization represents a transformative leap in the field's evolution. Traditional pathology methods, while reliable, are often time-consuming and susceptible to intra- and interobserver variability. In contrast, computer vision, empowered by artificial intelligence (AI) and machine learning (ML), promises revolutionary changes, offering consistent, reproducible, and objective results with ever-increasing speed and scalability. The applications of advanced algorithms and deep learning architectures like CNNs and U-Nets augment pathologists' diagnostic capabilities, opening new frontiers in automated image analysis. As these technologies mature and integrate into digital pathology workflows, they are poised to provide deeper insights into disease processes, quantify and standardize biomarkers, enhance patient outcomes, and automate routine tasks, reducing pathologists' workload. However, this transformative force calls for cross-disciplinary collaboration between pathologists, computer scientists, and industry innovators to drive research and development. While acknowledging its potential, this chapter addresses the limitations of AI in pathology, encompassing technical, practical, and ethical considerations during development and implementation.
Collapse
Affiliation(s)
- Justin Chang
- Virginia Commonwealth University Health System, Richmond, VA, United States
| | - Bryce Hatfield
- Virginia Commonwealth University Health System, Richmond, VA, United States.
| |
Collapse
|
3
|
Habart D, Koza A, Leontovyc I, Kosinova L, Berkova Z, Kriz J, Zacharovova K, Brinkhof B, Cornelissen DJ, Magrane N, Bittenglova K, Capek M, Valecka J, Habartova A, Saudek F. IsletSwipe, a mobile platform for expert opinion exchange on islet graft images. Islets 2023; 15:2189873. [PMID: 36987915 PMCID: PMC10064927 DOI: 10.1080/19382014.2023.2189873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
We previously developed a deep learning-based web service (IsletNet) for an automated counting of isolated pancreatic islets. The neural network training is limited by the absent consensus on the ground truth annotations. Here, we present a platform (IsletSwipe) for an exchange of graphical opinions among experts to facilitate the consensus formation. The platform consists of a web interface and a mobile application. In a small pilot study, we demonstrate the functionalities and the use case scenarios of the platform. Nine experts from three centers validated the drawing tools, tested precision and consistency of the expert contour drawing, and evaluated user experience. Eight experts from two centers proceeded to evaluate additional images to demonstrate the following two use case scenarios. The Validation scenario involves an automated selection of images and islets for the expert scrutiny. It is scalable (more experts, images, and islets may readily be added) and can be applied to independent validation of islet contours from various sources. The Inquiry scenario serves the ground truth generating expert in seeking assistance from peers to achieve consensus on challenging cases during the preparation for IsletNet training. This scenario is limited to a small number of manually selected images and islets. The experts gained an opportunity to influence IsletNet training and to compare other experts' opinions with their own. The ground truth-generating expert obtained feedback for future IsletNet training. IsletSwipe is a suitable tool for the consensus finding. Experts from additional centers are welcome to participate.
Collapse
Affiliation(s)
- David Habart
- Laboratory of Pancreatic Islets, Center of Experimental Medicine, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Adam Koza
- Dino School & Novy PORG, Prague, Czech Republic
| | - Ivan Leontovyc
- Laboratory of Pancreatic Islets, Center of Experimental Medicine, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Lucie Kosinova
- Laboratory of Pancreatic Islets, Center of Experimental Medicine, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Zuzana Berkova
- Laboratory of Pancreatic Islets, Center of Experimental Medicine, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Jan Kriz
- Diabetes Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Klara Zacharovova
- Laboratory of Pancreatic Islets, Center of Experimental Medicine, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Bas Brinkhof
- Department of Internal Medicine, Leiden University Medical Center (LUMC), Leiden, Netheralnds
| | - Dirk-Jan Cornelissen
- Department of Internal Medicine, Leiden University Medical Center (LUMC), Leiden, Netheralnds
| | - Nicholas Magrane
- Nuffield department of surgical sciences, Oxford Consortium for Islet transplantation, Oxford, UK
| | - Katerina Bittenglova
- Diabetes Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martin Capek
- Light Microscopy Laboratory, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Valecka
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Habartova
- Redox Photochemistry Lab, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - František Saudek
- Diabetes Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
4
|
Schüffler PJ, Geneslaw L, Yarlagadda DVK, Hanna MG, Samboy J, Stamelos E, Vanderbilt C, Philip J, Jean MH, Corsale L, Manzo A, Paramasivam NHG, Ziegler JS, Gao J, Perin JC, Kim YS, Bhanot UK, Roehrl MHA, Ardon O, Chiang S, Giri DD, Sigel CS, Tan LK, Murray M, Virgo C, England C, Yagi Y, Sirintrapun SJ, Klimstra D, Hameed M, Reuter VE, Fuchs TJ. Integrated digital pathology at scale: A solution for clinical diagnostics and cancer research at a large academic medical center. J Am Med Inform Assoc 2021; 28:1874-1884. [PMID: 34260720 PMCID: PMC8344580 DOI: 10.1093/jamia/ocab085] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/25/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Broad adoption of digital pathology (DP) is still lacking, and examples for DP connecting diagnostic, research, and educational use cases are missing. We blueprint a holistic DP solution at a large academic medical center ubiquitously integrated into clinical workflows; researchapplications including molecular, genetic, and tissue databases; and educational processes. MATERIALS AND METHODS We built a vendor-agnostic, integrated viewer for reviewing, annotating, sharing, and quality assurance of digital slides in a clinical or research context. It is the first homegrown viewer cleared by New York State provisional approval in 2020 for primary diagnosis and remote sign-out during the COVID-19 (coronavirus disease 2019) pandemic. We further introduce an interconnected Honest Broker for BioInformatics Technology (HoBBIT) to systematically compile and share large-scale DP research datasets including anonymized images, redacted pathology reports, and clinical data of patients with consent. RESULTS The solution has been operationally used over 3 years by 926 pathologists and researchers evaluating 288 903 digital slides. A total of 51% of these were reviewed within 1 month after scanning. Seamless integration of the viewer into 4 hospital systems clearly increases the adoption of DP. HoBBIT directly impacts the translation of knowledge in pathology into effective new health measures, including artificial intelligence-driven detection models for prostate cancer, basal cell carcinoma, and breast cancer metastases, developed and validated on thousands of cases. CONCLUSIONS We highlight major challenges and lessons learned when going digital to provide orientation for other pathologists. Building interconnected solutions will not only increase adoption of DP, but also facilitate next-generation computational pathology at scale for enhanced cancer research.
Collapse
Affiliation(s)
- Peter J Schüffler
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Luke Geneslaw
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - D Vijay K Yarlagadda
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthew G Hanna
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jennifer Samboy
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Evangelos Stamelos
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Chad Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - John Philip
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Health Informatics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marc-Henri Jean
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lorraine Corsale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Allyne Manzo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Neeraj H G Paramasivam
- Department of Information Systems, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - John S Ziegler
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jianjiong Gao
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Juan C Perin
- Department of Information Systems, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Young Suk Kim
- School of Medicine, Stanford University, Stanford, California, USA
| | - Umeshkumar K Bhanot
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael H A Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Orly Ardon
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sarah Chiang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dilip D Giri
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Carlie S Sigel
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lee K Tan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Melissa Murray
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Christina Virgo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Christine England
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yukako Yagi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - S Joseph Sirintrapun
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David Klimstra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Victor E Reuter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Thomas J Fuchs
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|