1
|
Chen T, Ye W, Gao S, Li Y, Luan J, Lv X, Wang S. Emerging importance of m6A modification in liver cancer and its potential therapeutic role. Biochim Biophys Acta Rev Cancer 2025; 1880:189299. [PMID: 40088993 DOI: 10.1016/j.bbcan.2025.189299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
Liver cancer refers to malignant tumors that form in the liver and is usually divided into several types, the most common of which is hepatocellular carcinoma (HCC), which originates in liver cells. Other rare types of liver cancer include intrahepatic cholangiocarcinoma (iCCA). m6A modification is a chemical modification of RNA that usually manifests as the addition of a methyl group to adenine in the RNA molecule to form N6-methyladenosine. This modification exerts a critical role in various biological processes by regulating the metabolism of RNA, affecting gene expression. Recent studies have shown that m6A modification is closely related to the occurrence and development of liver cancer, and m6A regulators can further participate in the pathogenesis of liver cancer by regulating the expression of key genes and the function of specific cells. In this review, we provided an overview of the latest advances in m6A modification in liver cancer research and explored in detail the specific functions of different m6A regulators. Meanwhile, we deeply analyzed the mechanisms and roles of m6A modification in liver cancer, aiming to provide novel insights and references for the search for potential therapeutic targets. Finally, we discussed the prospects and challenges of targeting m6A regulators in liver cancer therapy.
Collapse
Affiliation(s)
- Tao Chen
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province 230032, China.
| | - Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province 230032, China.
| |
Collapse
|
2
|
Gao F, Li J. Identification of ferroptosis-related gene signatures in temporal lobe epilepsy with hippocampal sclerosis. Front Neurosci 2025; 19:1530182. [PMID: 40242460 PMCID: PMC11999976 DOI: 10.3389/fnins.2025.1530182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/07/2025] [Indexed: 04/18/2025] Open
Abstract
Background Ferroptosis is a form of regulated cell death that damages neurons in the central nervous system. In this study, we aimed to construct ferroptosis-related gene signatures in temporal lobe epilepsy with hippocampal sclerosis (TLE-HS) and explore their diagnostic role in TLE-HS. Methods The GSE205661 dataset was acquired for training purposes, while the GSE71058 was obtained to serve as the validation dataset. Subsequently, ferroptosis-related differentially expressed genes (FR-DEGs) in TLE-HS were further analyzed. We used weighed gene co-expression network analysis (WGCNA) algorithm, single-factor logistic regression analysis, and LASSO algorithm to screen characteristic FR-DEGs. Then, the receiver operating characteristic (ROC) was used to evaluate the value of these characteristic genes in disease diagnosis. Finally, a long non-coding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) network was constructed. Results We identified 141 FR-DEGs in TLE-HS, and these genes were enriched in T-cell activation involved in immune response and signaling pathways related to lipids and atherosclerosis. Further WGCNA was performed to select 47 overlapping FR-DEGs, which were significantly enriched in 13 biological processes and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including the negative regulation of apoptotic process and ferroptosis. Four genes, namely PDK4, SMPD1, GPT2, and METTL14, were identified as signature genes in TLE-HS. Moreover, the ROC derived from the four genes in GSE205661 and GSE71058 for predicting TLE-HS had an area under the curve (AUC) of 0.988 and 0.929, respectively. Furthermore, the lncRNA-miRNA-mRNA network constructed from the 4 FR-DEGs consisted of 5 lncRNAs and 14 miRNAs. The signatures based on four FR-DEGs were found to be a strong predictor of TLE-HS, and they may represent valuable therapeutic targets for TLE-HS.
Collapse
Affiliation(s)
| | - Jinzi Li
- Department of Pediatrics, Yanbian University Hospital, Yanji, China
| |
Collapse
|
3
|
Jiang J, Zhang Y, Wang J, Qin Y, Zhao C, He K, Wang C, Liu Y, Feng H, Cai H, He S, Li R, Galstyan DS, Yang L, Lim LW, de Abreu MS, Kalueff AV. Using Zebrafish Models to Study Epitranscriptomic Regulation of CNS Functions. J Neurochem 2025; 169:e16311. [PMID: 39825734 DOI: 10.1111/jnc.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025]
Abstract
Epitranscriptomic regulation of cell functions involves multiple post-transcriptional chemical modifications of coding and non-coding RNA that are increasingly recognized in studying human brain disorders. Although rodent models are presently widely used in neuroepitranscriptomic research, the zebrafish (Danio rerio) has emerged as a useful and promising alternative model species. Mounting evidence supports the importance of RNA modifications in zebrafish CNS function, providing additional insights into epitranscriptomic mechanisms underlying a wide range of brain disorders. Here, we discuss recent data on the role of RNA modifications in CNS regulation, with a particular focus on zebrafish models, as well as evaluate current problems, challenges, and future directions of research in this field of molecular neurochemistry.
Collapse
Affiliation(s)
- Jiayou Jiang
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yunqian Zhang
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Jiyi Wang
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yixin Qin
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Chonguang Zhao
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Kai He
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Chaoming Wang
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yucheng Liu
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Haoyu Feng
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Huiling Cai
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Shulei He
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Ruiyu Li
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - David S Galstyan
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Longen Yang
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Lee Wei Lim
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
- Moscow Institute of Physics and Technology, Moscow, Russia
- Western Caspian University, Baku, Azerbaijan
| | - Allan V Kalueff
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Moscow Institute of Physics and Technology, Moscow, Russia
| |
Collapse
|