1
|
Turkez H, Oner S, Yıldırım OC, Arslan ME, Dimmito MP, Kahraman ÇY, Marinelli L, Sonmez E, Kiki Ö, Tatar A, Cacciatore I, Di Stefano A, Mardinoglu A. Synthesis and Characterization of Memantine-Loaded Niosomes for Enhanced Alzheimer's Disease Targeting. Pharmaceutics 2025; 17:267. [PMID: 40006634 PMCID: PMC11860023 DOI: 10.3390/pharmaceutics17020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Over the past 25 years, numerous biological molecules, like recombinant lysosomal enzymes, neurotrophins, receptors, and therapeutic antibodies, have been tested in clinical trials for neurological diseases. However, achieving significant success in clinical applications has remained elusive. A primary challenge has been the inability of these molecules to traverse the blood-brain barrier (BBB). Recognizing this hurdle, our study aimed to utilize niosomes as delivery vehicles, leveraging the "molecular Trojan horse" technology, to enhance the transport of molecules across the BBB. Methods: Previously synthesized memantine derivatives (MP1-4) were encapsulated into niosomes for improved BBB permeability, hypothesizing that this approach could minimize peripheral drug toxicity while ensuring targeted brain delivery. Using the human neuroblastoma (SH-SY5Y) cell line differentiated into neuron-like structures with retinoic acid and then exposed to amyloid beta 1-42 peptide, we established an in vitro Alzheimer's disease (AD) model. In this model, the potential usability of MP1-4 was assessed through viability tests (MTT) and toxicological response analysis. The niosomes' particle size and morphological structures were characterized using scanning electron microscopy (SEM), with their loading and release capacities determined via UV spectroscopy. Crucially, the ability of the niosomes to cross the BBB and their potential anti-Alzheimer efficacy were analyzed in an in vitro transwell system with endothelial cells. Results: The niosomal formulations demonstrated effective drug encapsulation (encapsulation efficiency: 85.3% ± 2.7%), controlled release (72 h release: 38.5% ± 1.2%), and stable morphology (PDI: 0.22 ± 0.03, zeta potential: -31.4 ± 1.5 mV). Among the derivatives, MP1, MP2, and MP4 exhibited significant neuroprotective effects, enhancing cell viability by approximately 40% (p < 0.05) in the presence of Aβ1-42 at a concentration of 47 µg/mL. The niosomal delivery system improved BBB permeability by 2.5-fold compared to free drug derivatives, as confirmed using an in vitro bEnd.3 cell model. Conclusions: Memantine-loaded niosomes provide a promising platform for overcoming BBB limitations and enhancing the therapeutic efficacy of Alzheimer's disease treatments. This study highlights the potential of nanotechnology-based delivery systems in developing targeted therapies for neurodegenerative diseases. Further in vivo studies are warranted to validate these findings and explore clinical applications.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum 25100, Turkey
| | - Sena Oner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25100, Turkey; (S.O.); (O.C.Y.); (M.E.A.)
| | - Ozge Caglar Yıldırım
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25100, Turkey; (S.O.); (O.C.Y.); (M.E.A.)
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25100, Turkey; (S.O.); (O.C.Y.); (M.E.A.)
- Genescence Biotechnology, Ata Teknokent, Atatürk University Technology Development Zone, Erzurum 25100, Turkey
| | - Marilisa Pia Dimmito
- Department of Pharmacy, University “G. D’Annunzio” of Chieti-Pescara, 6512 Chieti, Italy; (M.P.D.); (L.M.); (I.C.); (A.D.S.)
| | - Çigdem Yuce Kahraman
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, Erzurum 25100, Turkey; (Ç.Y.K.); (A.T.)
| | - Lisa Marinelli
- Department of Pharmacy, University “G. D’Annunzio” of Chieti-Pescara, 6512 Chieti, Italy; (M.P.D.); (L.M.); (I.C.); (A.D.S.)
| | - Erdal Sonmez
- Advanced Materials Research Laboratory, Department of Nanoscience & Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum 25100, Turkey;
| | - Özlem Kiki
- Department of Medical Biochemistry, Faculty of Medicine, Atatürk University, Erzurum 25100, Turkey;
| | - Abdulgani Tatar
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, Erzurum 25100, Turkey; (Ç.Y.K.); (A.T.)
| | - Ivana Cacciatore
- Department of Pharmacy, University “G. D’Annunzio” of Chieti-Pescara, 6512 Chieti, Italy; (M.P.D.); (L.M.); (I.C.); (A.D.S.)
| | - Antonio Di Stefano
- Department of Pharmacy, University “G. D’Annunzio” of Chieti-Pescara, 6512 Chieti, Italy; (M.P.D.); (L.M.); (I.C.); (A.D.S.)
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| |
Collapse
|
2
|
Pifferi A, Chiaino E, Fernandez-Abascal J, Bannon AC, Davey GP, Frosini M, Valoti M. Exploring the Regulation of Cytochrome P450 in SH-SY5Y Cells: Implications for the Onset of Neurodegenerative Diseases. Int J Mol Sci 2024; 25:7439. [PMID: 39000543 PMCID: PMC11242626 DOI: 10.3390/ijms25137439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Human individual differences in brain cytochrome P450 (CYP) metabolism, including induction, inhibition, and genetic variation, may influence brain sensitivity to neurotoxins and thus participate in the onset of neurodegenerative diseases. The aim of this study was to explore the modulation of CYPs in neuronal cells. The experimental approach was focused on differentiating human neuroblastoma SH-SY5Y cells into a phenotype resembling mature dopamine neurons and investigating the effects of specific CYP isoform induction. The results demonstrated that the differentiation protocols using retinoic acid followed by phorbol esters or brain-derived neurotrophic factor successfully generated SH-SY5Y cells with morphological neuronal characteristics and increased neuronal markers (NeuN, synaptophysin, β-tubulin III, and MAO-B). qRT-PCR and Western blot analysis showed that expression of the CYP 1A1, 3A4, 2D6, and 2E1 isoforms was detectable in undifferentiated cells, with subsequent increases in CYP 2E1, 2D6, and 1A1 following differentiation. Further increases in the 1A1, 2D6, and 2E1 isoforms following β-naphthoflavone treatment and 1A1 and 2D6 isoforms following ethanol treatment were evident. These results demonstrate that CYP isoforms can be modulated in SH-SY5Y cells and suggest their potential as an experimental model to investigate the role of CYPs in neuronal processes involved in the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alice Pifferi
- Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy; (A.P.); (E.C.); (A.C.B.); (M.V.)
| | - Elda Chiaino
- Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy; (A.P.); (E.C.); (A.C.B.); (M.V.)
| | - Jesus Fernandez-Abascal
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Carretera de Utrera km 1, 41013 Sevilla, Spain;
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Carretera de Utrera km 1, 41013 Seville, Spain
| | - Aoife C. Bannon
- Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy; (A.P.); (E.C.); (A.C.B.); (M.V.)
| | - Gavin P. Davey
- School of Biochemistry and Immunology, Trinity College Dublin, 3533645 Dublin, Ireland;
| | - Maria Frosini
- Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy; (A.P.); (E.C.); (A.C.B.); (M.V.)
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy; (A.P.); (E.C.); (A.C.B.); (M.V.)
| |
Collapse
|
3
|
Bilginer Kartal R, Arslan Yildiz A. Exploring Neuronal Differentiation Profiles in SH-SY5Y Cells through Magnetic Levitation Analysis. ACS OMEGA 2024; 9:14955-14962. [PMID: 38585102 PMCID: PMC10993277 DOI: 10.1021/acsomega.3c08962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
Magnetic levitation (MagLev) is a powerful and versatile technique that can sort objects based on their density differences. This paper reports the sorting of SH-SY5Y cells for neuronal differentiation by the MagLev technique. Herein, SH-SY5Y cells were differentiated with retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). Neuronal differentiation was confirmed by neurite extension measurement and the immunostaining assay. Neurites reached the maximum length on day 9 after sequential treatment with RA-BDNF. Neuronal marker expression of un-/differentiated cells was investigated by β-III tubulin and neuronal nuclei (NeuN) and differentiated cells exhibited a higher fluorescence intensity compared to un-/differentiated cells. MagLev results revealed that the density of differentiated SH-SY5Y cells gradually increased from 1.04 to 1.06 g/mL, while it remained stable at 1.05 g/mL for un-/differentiated cells. These findings signified that cell density would be a potent indicator of neuronal differentiation. Overall, it was shown that MagLev methodology can provide rapid, label-free, and easy sorting to analyze the differentiation of cells at a single-cell level.
Collapse
Affiliation(s)
| | - Ahu Arslan Yildiz
- Department of Bioengineering, Izmir Institute of Technology (IZTECH), 35430 Izmir, Turkey
| |
Collapse
|
4
|
Magalingam KB, Radhakrishnan AK, Somanath SD, Md S, Haleagrahara N. Influence of serum concentration in retinoic acid and phorbol ester induced differentiation of SH-SY5Y human neuroblastoma cell line. Mol Biol Rep 2020; 47:8775-8788. [PMID: 33098048 DOI: 10.1007/s11033-020-05925-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Numerous protocols to establish dopaminergic phenotype in SH-SY5Y cells have been reported. In most of these protocols there are variations in concentration of serum used. In this paper, we compared the effects of high (10%), low (3%) and descending (2.5%/1%) serum concentration in differentiation medium containing different proportion of retinoic acid (RA) and 12-O-Tetradecanoylphorbol-13-acetate (TPA) or RA-only on the undifferentiated SH-SY5Y cells with regards to cell morphology, biochemical and gene expression alterations. Cells differentiated in culture medium containing low and descending serum concentrations showed increased number of neurite projections and reduced proliferation rates when compared to undifferentiated cells. The SH-SY5Y cells differentiated in culture medium containing 3% RA and low serum or descending (2.5%/1% RA/TPA) were found to be more susceptible to 6-hydroxydopamine (6-OHDA) induced cytotoxicity. Cells differentiated with RA/TPA or RA differentiated showed increased production of the α-synuclein (SNCA) neuroprotein and dopamine neurotransmitter compared to undifferentiated cells, regardless serum concentrations used. There was no significant difference in the expression of tyrosine hydroxylase (TH) gene between undifferentiated and differentiated SH-SY5Y cells. However, the expression of dopamine receptor D2 (DRD2) gene was markedly increased (p<0.05) in differentiated cells with 3% serum and RA only when compared to undifferentiated cells. In conclusion, to terminally differentiate SH-SY5Y cells to be used as a cell-based model to study Parkinson's disease (PD) to investigate molecular mechanisms and drug discovery, the optimal differentiation medium should contain 3% serum in RA-only.
Collapse
Affiliation(s)
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Bandar Sunway, Malaysia
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Sushela Devi Somanath
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Nagaraja Haleagrahara
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia.
- College of Public Health, Medicine and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia.
| |
Collapse
|