1
|
Okselni T, Septama AW, Juliadmi D, Dewi RT, Angelina M, Yuliani T, Saragih GS, Saputri A. Quercetin as a therapeutic agent for skin problems: a systematic review and meta-analysis on antioxidant effects, oxidative stress, inflammation, wound healing, hyperpigmentation, aging, and skin cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5011-5055. [PMID: 39738831 DOI: 10.1007/s00210-024-03722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Quercetin is abundant in plants and has notable pharmacological properties for skin health. This review aims to comprehensively evaluate the effects of quercetin on skin-related issues, adhering to the PRISMA guidelines and analyzing studies from ScienceDirect, Web of Science, Scopus, and PubMed. Of the 1,398 studies identified, 65 studies met the criteria for meta-analysis. The meta-analysis indicated that quercetin had powerful antioxidant properties, protecting against oxidative stress by significantly lowering levels of MDA (Z-score, 2.51), ROS (Z-score, 3.81), and LPO (Z-score, 4.46), and enhancing enzymes of GSH (Z-score, 5.46), CAT (Z-score, 5.20), and SOD (Z-score, 4.37). Quercetin acted as an anti-inflammatory by significantly suppressing protein regulators such as NF-κβ, AP-1, and MAPKs (ERK and JNK), cytokines of TNFα, IL-6, IL-1β, IL-8, and MCP-1, and enzymes of COX-2, iNOS, and MPO, while upregulating the cytokine IL-10. Additionally, quercetin significantly suppressed IL-4 (Z-score, 3.16) and IFNγ (Z-score, 3.76) cytokines involved in chronic inflammation of atopic dermatitis. Quercetin also supported wound healing by significantly decreasing inflammatory cells (Z-score, 5.60) and enhancing fibroblast distribution (Z-score, 5.98), epithelialization (Z-score, 8.57), collagen production (Z-score, 4.20), and angiogenesis factors of MVD (Z-score, 5.66) and VEGF (Z-score, 3.86). Furthermore, quercetin significantly inhibited tyrosinase activity (Z-score, 1.95), resulting in a significantly reduced melanin content (Z-score, 2.56). A significant reduction in DNA damage (Z-score, 3.27), melanoma cell viability (Z-score, 2.97), and tumor formation was also observed to ensure the promising activity of quercetin for skin issues. This review highlights quercetin's potential as a multifaceted agent in skin care and treatment.
Collapse
Affiliation(s)
- Tia Okselni
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia.
- BRIN-Kawasan BJ Habibie, Serpong, Banten, Indonesia.
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Dian Juliadmi
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong, 16911, Indonesia
| | - Rizna Triana Dewi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Marissa Angelina
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Tri Yuliani
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Grace Serepina Saragih
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Ariyanti Saputri
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| |
Collapse
|
2
|
Kizilkan B, Sereflican B, Cetinkaya A, Erdogan Duzcu S, Altug C, Kizilkan J. Photoprotective effects of quercetin on photoaging-induced rats. Cutan Ocul Toxicol 2025; 44:63-71. [PMID: 39690899 DOI: 10.1080/15569527.2024.2442584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/13/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
PURPOSE Photoaging is characterised by cutaneous changes caused by exposure to ultraviolet light over time. Quercetin is a bioflavanoid with antioxidant, antineoplastic, and anti-inflammatory effects. This study investigated the therapeutic effects of topical quercetin on photoaging, a phenomenon not previously studied in ultraviolet A (UVA)-induced photoaging. METHODS A total of 40 rats were randomly categorised into 5 groups, each comprising 8 rats. A photoaging model was induced by applying UVA to the dorsal region of all rats, except for the negative control group. Topical 0.1% retinoic acid was applied to one UVA group, topical 0.3% quercetin to another UVA group, and both agents were applied in combination to yet another UVA group 5 days a week for 8 weeks. Subsequently, wrinkle values were measured, reactive oxygen species (ROS) and matrix metalloproteinase-1 (MMP-1) levels were analysed, and histopathological parameters were examined. RESULTS The wrinkle value of the UVA group was found to be significantly higher than that of the UVA + Quercetin group. Collagen damage was lower in the UVA + Quercetin group than in the UVA group, although this difference was not statistically significant. Compared with the UVA + Retinoic Acid group, the UVA + Quercetin group exhibited a more significant decrease in inflammation. MMP-1 values were considerably higher in the UVA + Retinoic Acid and UVA + Quercetin + Retinoic Acid groups as well as in the UVA + Quercetin group compared with the control and UVA groups. CONCLUSION The present study showed that quercetin can be utilised in the treatment of photoaging, especially when combined with retinoic acid.
Collapse
Affiliation(s)
- Betul Kizilkan
- Department of Dermatology, Izzet Baysal Training and Research Hospital, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Betul Sereflican
- Department of Dermatology, Izzet Baysal Training and Research Hospital, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Ayhan Cetinkaya
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Selma Erdogan Duzcu
- Department of Pathology, Izzet Baysal Training and Research Hospital, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Cevher Altug
- Department of Organic Chemistry, Faculty of Science and Letters, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Jehat Kizilkan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Altinbas University, Istanbul, Turkey
| |
Collapse
|
3
|
Sharda D, Attri K, Choudhury D. Greener healing: sustainable nanotechnology for advanced wound care. DISCOVER NANO 2024; 19:127. [PMID: 39136798 PMCID: PMC11322481 DOI: 10.1186/s11671-024-04061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/29/2024] [Indexed: 08/16/2024]
Abstract
Wound healing involves a carefully regulated sequence of events, encompassing pro-inflammatory and anti-inflammatory stages, tissue regeneration, and remodeling. However, in individuals with diabetes, this process gets disrupted due to dysregulation caused by elevated glucose levels and pro-inflammatory cytokines in the bloodstream. Consequently, the pro-inflammatory stage is prolonged, while the anti-inflammatory phase is delayed, leading to impaired tissue regeneration and remodeling with extended healing time. Furthermore, the increased glucose levels in open wounds create an environment conducive to microbial growth and tissue sepsis, which can escalate to the point of limb amputation. Managing diabetic wounds requires meticulous care and monitoring due to the lack of widely available preventative and therapeutic measures. Existing clinical interventions have limitations, such as slow recovery rates, high costs, and inefficient drug delivery methods. Therefore, exploring alternative avenues to develop effective wound-healing treatments is essential. Nature offers a vast array of resources in the form of secondary metabolites, notably polyphenols, known for their antimicrobial, anti-inflammatory, antioxidant, glucose-regulating, and cell growth-promoting properties. Additionally, nanoparticles synthesized through environmentally friendly methods hold promise for wound healing applications in diabetic and non-diabetic conditions. This review provides a comprehensive discussion and summary of the potential wound-healing abilities of specific natural polyphenols and their nanoparticles. It explores the mechanisms of action underlying their efficacy and presents effective formulations for promoting wound-healing activity.
Collapse
Affiliation(s)
- Deepinder Sharda
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Komal Attri
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Centre of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Centre of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
4
|
Herman A, Herman AP. Herbal Products and Their Active Constituents for Diabetic Wound Healing-Preclinical and Clinical Studies: A Systematic Review. Pharmaceutics 2023; 15:281. [PMID: 36678910 PMCID: PMC9865817 DOI: 10.3390/pharmaceutics15010281] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The purpose of this review is to provide verified data on the current knowledge acquired in preclinical and clinical studies regarding topically used herbal products and their active constituents (formulations and dressings) with diabetic wound healing activity. Moreover, herbal products and their active constituents used for diabetic wound infections, and various cellular and molecular mechanisms of their actions will also be described. The electronic databases were searched for articles published from 2012 to 2022. Publications with oral or systemic administration of herbal products in diabetic wound healing, published before 2012, available only as an abstract, or in languages other than English were excluded from the study. The 59 articles comparing topically used herbal products in diabetic wound healing treatment versus control treatments (placebo or active therapy) were selected. Herbal products through different mechanisms of action, including antimicrobial, anti-inflammatory, antioxidant activity, stimulation of angiogenesis, production of cytokines and growth factors, keratinocytes, and fibroblast migration and proliferation may be considered as an important support during conventional therapy or even as a substitute for synthetic drugs used for diabetic wound treatment.
Collapse
Affiliation(s)
- Anna Herman
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75 Street, 00-662 Warsaw, Poland
| | - Andrzej Przemysław Herman
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, 05-110 Jabłonna, Poland
| |
Collapse
|
5
|
Bioactive Substances and Biological Functions in Malus hupehensis: A Review. Molecules 2023; 28:molecules28020658. [PMID: 36677713 PMCID: PMC9866576 DOI: 10.3390/molecules28020658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Malus hupehensis (MH), as a natural resource, contains various active ingredients such as polyphenols, polysaccharides, proteins, amino acids, volatile substances, and other components. Increasingly, studies have indicated that MH showed a variety of biological activities, including antioxidant, hypoglycemic, hypolipidemic, anti-cancer, anti-inflammatory activities, and other activities. Hence, MH has attracted wide interest because of its high medical and nutritional value. It is necessary to review the active components and biological activities of MH. This paper systematically reviewed the chemical substances, biological activities, and potential problems of MH to further promote the related research of MH and provide an important reference for its application and development in medicine and food.
Collapse
|
6
|
Uttayarat P, Chiangnoon R, Thongnopkoon T, Noiruksa K, Trakanrungsie J, Phattanaphakdee W, Chittasupho C, Athikomkulchai S. Electron Beam Irradiation Cross-Linked Hydrogel Patches Loaded with Red Onion Peel Extract for Transdermal Drug Delivery: Formulation, Characterization, Cytocompatibility, and Skin Permeation. Gels 2023; 9:gels9010052. [PMID: 36661818 PMCID: PMC9858140 DOI: 10.3390/gels9010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The use of bioactive molecules derived from medicinal plants in wound healing has recently attracted considerable attention in both research and public interest. In this work, we demonstrated the first attempt to incorporate the extract from Thai red onion skins in hydrogel patches intended for transdermal delivery. The red onion skin extract (ROSE) was first prepared and evaluated for cytotoxicity by MTT assay with both L929 and human dermal fibroblast cells. Hydrogel patches with porous microstructure and high water content were fabricated from polyvinyl alcohol (PVA) by electron beam irradiation and characterized for their physical, mechanical, morphological, and cytocompatible properties prior to the loading of ROSE. After decontamination by electron beam irradiation, the in vitro release profile exhibited the burst release of extract from ROSE-coated hydrogel patches within 5 h, followed by the sustained release up to 48 h. Finally, evaluation of skin permeation using Franz cell setup with a newborn pig skin model showed that the permeation of ROSE from the hydrogel patch increased with time and reached the maximum of 262 µg/cm2, which was well below the cytotoxicity threshold, at 24 h. These results demonstrated that our ROSE-coated hydrogel patches could potentially be used in transdermal delivery.
Collapse
Affiliation(s)
- Pimpon Uttayarat
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand
| | - Rattanakorn Chiangnoon
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand
| | - Thanu Thongnopkoon
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand
| | - Kesinee Noiruksa
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand
| | - Jirachaya Trakanrungsie
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand
| | - Wattanaporn Phattanaphakdee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (C.C.); (S.A.)
| | - Sirivan Athikomkulchai
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand
- Correspondence: (C.C.); (S.A.)
| |
Collapse
|
7
|
Souza HR, Zucoloto AR, Francisco ITP, Rays HP, Tinti NP, Della Matta NJ, Guandalini RB, Yoshikawa AH, Messias da Silva J, Possebon L, Iyomasa-Pilon MM, de Haro Moreno A, Girol AP. Evaluation of the healing properties of Garcinia brasiliensis extracts in a cutaneous wound model. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115334. [PMID: 35597412 DOI: 10.1016/j.jep.2022.115334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wound healing is a complex process that can leave pathological scars, especially in case of infections from opportunistic microorganisms. In this context, herbal medicines open up great possibilities for investigation. One of the species of interest native to Brazil is Garcinia brasiliensis ("bacupari"). Traditionally known for treating wounds and ulcers, G. brasiliensis presents anti-inflammatory, antioxidant and antimicrobials properties. But, its wound healing profile in experimental models, in order to validate its efficacy, is still litle studied. AIM OF THE STUDY Thus, the objective of this work was to evaluate, in an infected cutanous wound model, the potential of formulations incorporated with G. brasiliensis leaves extracts. MATERIALS AND METHODS Crude extract (CE), Ethyl Acetate Fraction (EAF) and Hexanic Fraction (HF) were submitted to phytochemical assays, high performance thin layer chromatography (HTPLC) and cytotoxicity studies. CE and EAF were also tested for microbicidal properties and incorporated in cream and gel formulations at 10% concentration. After stability testing, the gel formulations with CE or EAF at 10% were selected and applied to skin wounds infected or not with Staphylococcus aureus in Wistar rats. The healing potenttial of the extracts was verified by the expression of the protein Annexin A1 (AnxA1), related to the processes of inflammation and antifibrotic function, the cells immunostaining for Gasdermin-D (GSDM-D), a marker of pyroptotic cell death, and the dosage of interleukin-10 (IL-10) and monocyte chemotactic protein (MCP)-1 inflammatory mediators. RESULTS Phytochemical studies indicated the presence of compounds of pharmacological interest, including Catechin, Quercetin and Berberine in addition to low cytotoxicity of CE and EAF at 10%. After the 6-day topical treatments, CE and EAF gel formulations demonstrated to control the pruritus formation process. The treatments decreased AnxA1 expression and the amount of cells immunostained for GSDM-D, and increased the expression of MCP-1 in infected wounds. CONCLUSIONS Together, the results show important anti-inflammatory profile and skin healing potential of CE and EAF from G. brasiliensis leaves, even in infected lesions, with therapeutic perspectives.
Collapse
Affiliation(s)
- Helena Ribeiro Souza
- São Paulo State University, (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São José do Rio Preto Campus, SP, Brazil; University Center Padre Albino (UNIFIPA), Catanduva, SP, Brazil
| | | | | | | | | | | | | | | | | | - Lucas Possebon
- University Center Padre Albino (UNIFIPA), Catanduva, SP, Brazil
| | | | | | - Ana Paula Girol
- São Paulo State University, (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São José do Rio Preto Campus, SP, Brazil; University Center Padre Albino (UNIFIPA), Catanduva, SP, Brazil; São Paulo Federal University (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Liu Y, Liu C, Kou X, Wang Y, Yu Y, Zhen N, Jiang J, Zhaxi P, Xue Z. Synergistic Hypolipidemic Effects and Mechanisms of Phytochemicals: A Review. Foods 2022; 11:2774. [PMID: 36140902 PMCID: PMC9497508 DOI: 10.3390/foods11182774] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 12/12/2022] Open
Abstract
Hyperlipidemia, a chronic disorder of abnormal lipid metabolism, can induce obesity, diabetes, and cardiovascular and cerebrovascular diseases such as coronary heart disease, atherosclerosis, and hypertension. Increasing evidence indicates that phytochemicals may serve as a promising strategy for the prevention and management of hyperlipidemia and its complications. At the same time, the concept of synergistic hypolipidemic and its application in the food industry is rapidly increasing as a practical approach to preserve and improve the health-promoting effects of functional ingredients. The current review focuses on the effects of single phytochemicals on hyperlipidemia and its mechanisms. Due to the complexity of the lipid metabolism regulatory network, the synergistic regulation of different metabolic pathways or targets may be more effective than single pathways or targets in the treatment of hyperlipidemia. This review summarizes for the first time the synergistic hypolipidemic effects of different combinations of phytochemicals such as combinations of the same category of phytochemicals and combinations of different categories of phytochemicals. In addition, based on the different metabolic pathways or targets involved in synergistic effects, the possible mechanisms of synergistic hypolipidemic effects of the phytochemical combination are illustrated in this review. Hence, this review provides clues to boost more phytochemical synergistic hypolipidemic research and provides a theoretical basis for the development of phytochemicals with synergistic effects on hyperlipidemia and its complications.
Collapse
Affiliation(s)
- Yazhou Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850000, China
| | - Chunlong Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Dynamiker Biotechnology (Tianjin) Co., Ltd., Tianjin 300450, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yumeng Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ni Zhen
- Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850000, China
| | - Jingyu Jiang
- Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850000, China
| | - Puba Zhaxi
- Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850000, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Zhu C, Liu G, Gu X, Yin J, Xia A, Han M, Zhang T, Jiang Q. Effect of quercetin on muscle growth and antioxidant status of the dark sleeper Odontobutis potamophila. Front Genet 2022; 13:938526. [PMID: 35957695 PMCID: PMC9358148 DOI: 10.3389/fgene.2022.938526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Quercetin is a flavanol beneficial in reducing fat, promoting muscle growth, and Anti-oxidation. To study its effects in freshwater fish, the full-length cDNA of the follistatin (FST) and myostatin (MSTN) genes of the dark sleeper Odontobutis potamophila were cloned for the first time. Juvenile individual O. potamophila was exposed to quercetin at one of four concentrations (0, 2.5, 5, and 10 mg/L) for 21 days. The expression level of MSTN which inhibits muscle growth in the quercetin solution was lower than in the unexposed control group. The genes that promote muscle growth are in TGF-β superfamily like FST, TGF-β1 (transforming growth factor-beta 1), and Myogenic regulatory factors (MRFs) like Myf5 (myogenic factor 5), MyoD (myogenic differentiation), MyoG (myogenin), were higher than in the control group. Apolipoprotein and growth hormone receptor transcription levels in the quercetin-treated fish were significantly lower than in the control group. The concentrations of triglyceride, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol in the muscle tissue decreased, and the lipid-lowering function of quercetin was also demonstrated at the biochemical level. In this study, we analyzed the mRNA levels of AKT, Keap1 (kelch-like ECH-associated protein 1), Nrf2 (NF-E2-related factor 2) oxidation-related genes in the Nrf2/ARE antioxidant pathway, and Malondialdehyde (MDA), catalase (CAT) activity and glutathione (GSH) content in the hepatopancreas of O. potamophila after quercetin treatment, the mRNA expression of AKT, Nrf2 and CAT activity and GSH content are higher than in the control group. Quercetin enhances antioxidant properties and positively affects muscle growth. The results showed that quercetin has no significant effects on the growth performance of O. potamophila, but is effective in increasing muscle growth rate and lowering muscle fat content.
Collapse
Affiliation(s)
- Chenxi Zhu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Guoxing Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiankun Gu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Lowtemperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and TechnologyResources (Agricultural Germplasm Resources) Coordination Service Platform, Freshwater Fisheries Research Institute of JiangsuProvince, NanjingChina
| | - Jiawen Yin
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Lowtemperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and TechnologyResources (Agricultural Germplasm Resources) Coordination Service Platform, Freshwater Fisheries Research Institute of JiangsuProvince, NanjingChina
| | - Aijun Xia
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Lowtemperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and TechnologyResources (Agricultural Germplasm Resources) Coordination Service Platform, Freshwater Fisheries Research Institute of JiangsuProvince, NanjingChina
| | - Mingming Han
- Biology Program, School of Distance Education, Universiti Sains Malaysia, Minden, Malaysia
| | - Tongqing Zhang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Lowtemperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and TechnologyResources (Agricultural Germplasm Resources) Coordination Service Platform, Freshwater Fisheries Research Institute of JiangsuProvince, NanjingChina
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Lowtemperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and TechnologyResources (Agricultural Germplasm Resources) Coordination Service Platform, Freshwater Fisheries Research Institute of JiangsuProvince, NanjingChina
- *Correspondence: Qichen Jiang,
| |
Collapse
|
10
|
Immortelle essential oil-based ointment improves wound healing in a diabetic rat model. Biomed Pharmacother 2022; 150:112941. [PMID: 35429742 DOI: 10.1016/j.biopha.2022.112941] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
The phytochemical analysis of the investigated Immortelle essential oil revealed the presence of monoterpenes and sesquiterpenes as major components that might be efficient as a wound healing potential agent. The present study aimed to develop an ointment based on the Immortelle essential oil and investigate its wound healing effects on excision wounds in diabetic rats. The topical formulated Immortelle ointment was subjected to pharmaco-technical characterization. Thirty-two diabetic rats with the induced excision wound were used to evaluate in vivo wound healing effects of ointment. The animals were randomly divided into four groups untreated or topically treated with either a 1% silver sulfadiazine, the ointment base, or Immortelle ointment. The response to the treatment was assessed by macroscopic, biochemical and histopathological analysis. The ointment, compatible with the skin remained stable for 6 months. Topical application of the Immortelle ointment showed the highest wound contraction with the highest content of hydroxyproline in comparison to the all examined groups. The Immortelle ointment showed significant wound contraction from day 7 to day 21 as compared to other groups. On the day 21, there was an average of 99.32% wound contraction in the Immortelle group, whereas the mean wound contraction in the negative control and ointment base group was 71.36% and 81.26% respectively. The histopathological results validated the potential wound healing effect of Immortelle ointment with evident post-excision scar maturation and increased collagen fibers density. Our findings revealed that the Immortelle ointment approach might serve as a promising and innovative tool for wound healing.
Collapse
|
11
|
Huang J, Teh BM, Xu Z, Yuan Z, Zhou C, Shi Y, Shen Y. The possible mechanism of Hippophae fructus oil applied in tympanic membrane repair identified based on network pharmacology and molecular docking. J Clin Lab Anal 2022; 36:e24157. [PMID: 34859918 PMCID: PMC8761429 DOI: 10.1002/jcla.24157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE This study aimed to explore the mechanisms of Hippophae fructus oil (HFO) in the treatment of tympanic membrane (TM) perforation through network pharmacology-based identification. METHODS The compounds and related targets of HFO were extracted from the TCMSP database, and disease information was obtained from the OMIM, GeneCards, PharmGkb, TTD, and DrugBank databases. A Venn diagram was generated to show the common targets of HFO and TM, and GO and KEGG analyses were performed to explore the potential biological processes and signaling pathways. The PPI network and core gene subnetwork were constructed using the STRING database and Cytoscape software. A molecular docking analysis was also conducted to simulate the combination of compounds and gene proteins. RESULTS A total of 33 compounds and their related targets were obtained from the TCMSP database. After screening the 393 TM-related targets, 21 compounds and 22 gene proteins were selected to establish the network diagram. GO and KEGG enrichment analyses revealed that HFO may promote TM healing by influencing cellular oxidative stress and related signaling pathways. A critical subnetwork was obtained by analyzing the PPI network with nine core genes: CASP3, MMP2, IL1B, TP53, EGFR, CXCL8, ESR1, PTGS2, and IL6. In addition, a molecular docking analysis revealed that quercetin strongly binds the core proteins. CONCLUSION According to the analysis, HFO can be utilized to repair perforations by influencing cellular oxidative stress. Quercetin is one of the active compounds that potentially plays an important role in TM regeneration by influencing 17 gene proteins.
Collapse
Affiliation(s)
- Juntao Huang
- Department of Otolaryngology Head and Neck SurgeryNingbo Medical Center (Ningbo Lihuili Hospital)The Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
- School of MedicineNingbo UniversityNingboChina
| | - Bing Mei Teh
- Department of Ear Nose and Throat, Head and Neck SurgeryEastern HealthBox HillVictoriaAustralia
- Department of Otolaryngology, Head and Neck SurgeryMonash HealthClaytonVictoriaAustralia
- Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVictoriaAustralia
| | - Ziqian Xu
- Department of DermatologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhechen Yuan
- Department of Otolaryngology Head and Neck SurgeryNingbo Medical Center (Ningbo Lihuili Hospital)The Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
- School of MedicineNingbo UniversityNingboChina
| | - Chongchang Zhou
- Department of Otolaryngology Head and Neck SurgeryNingbo Medical Center (Ningbo Lihuili Hospital)The Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
- School of MedicineNingbo UniversityNingboChina
| | - Yunbin Shi
- Department of Otolaryngology Head and Neck SurgeryNingbo Medical Center (Ningbo Lihuili Hospital)The Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
- School of MedicineNingbo UniversityNingboChina
| | - Yi Shen
- Department of Otolaryngology Head and Neck SurgeryNingbo Medical Center (Ningbo Lihuili Hospital)The Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
- School of MedicineNingbo UniversityNingboChina
| |
Collapse
|
12
|
Hypoglycemic Effects of Plant Flavonoids: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2057333. [PMID: 34925525 PMCID: PMC8674047 DOI: 10.1155/2021/2057333] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus is a metabolic disorder with chronic high blood glucose levels, and it is associated with defects in insulin secretion, insulin resistance, or both. It is also a major public issue, affecting the world's population. This disease contributes to long-term health complications such as dysfunction and failure of multiple organs, including nerves, heart, blood vessels, kidneys, and eyes. Flavonoids are phenolic compounds found in nature and usually present as secondary metabolites in plants, vegetables, and fungi. Flavonoids possess many health benefits such as anti-inflammatory and antioxidant activities, and naturally occurring flavonoids contribute to antidiabetic effects.Many studies conducted in vivo and in vitro have proven the hypoglycemic effect of plant flavonoids. A large number of studies showed that flavonoids hold positive results in controlling the blood glucose level in streptozotocin (STZ)-induced diabetic rats and further prevent the complications of diabetes. The future development of flavonoid-based drugs is believed to provide significant effects on diabetes mellitus and diabetes complication diseases. This review aims at summarizing the various types of flavonoids that function as hyperglycemia regulators such as inhibitors of α-glucosidase and glucose cotransporters in the body. This review article discusses the hypoglycemic effects of selected plant flavonoids namely quercetin, kaempferol, rutin, naringenin, fisetin, and morin. Four search engines, PubMed, Google Scholar, Scopus, and SciFinder, are used to collect the data.
Collapse
|
13
|
Wang H, Jiang W, Hu Y, Wan Z, Bai H, Yang Q, Zheng Q. Quercetin improves atrial fibrillation through inhibiting TGF-β/Smads pathway via promoting MiR-135b expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153774. [PMID: 34656066 DOI: 10.1016/j.phymed.2021.153774] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 09/12/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE To investigate the role and mechanism of quercetin in isoprenaline (ISO)-induced atrial fibrillation (AF). STUDY DESIGN Rat cardiac fibroblasts (RCFs) models and RCFs were used to explore the effect and underlying mechanism of quercetin in isoprenaline (ISO)-induced atrial fibrillation (AF) in vivo and in vitro by a series of experiments. METHODS Differentially expressed microRNAs were screened from human AF tissues using the GEO2R and RT-qPCR. The expressions of TGF-β/Smads pathway molecules (TGFβ1, TGFBR1, Tgfbr1, Tgfbr2, Smad2, Smad3, Smad4) in AF tissues were detected by RT-qPCR and Western blot. The relationships between miR-135b and genes (Tgfbr1, Tgfbr2, Smad2) were analyzed by Pearson correlation, TargetScan and dual-luciferase activity assay. RCFs induced by ISO were treated with quercetin (20 or 50 μM), miR-135b mimic and inhibitor, siTgfbr1 and their corresponding controls, then the cell viability was determined by MTT and the expressions of cyclin D1, α-SMA, collagen-related molecules, TGF-β/Smads pathway molecules, and miR-135b were measured by RT-qPCR and Western blot. ISO-induced rats were treated with quercetin (25 mg/kg/day) via gavage, miR-135b antagomir, agomir and their corresponding controls. The treated rats were used for the detection of miR-135b expression by RT-qPCR, histopathological observation by HE and Masson staining, and the detection of Col1A1 and fibronectin contents by immunohistochemical technique. RESULTS The expression of miR-135b was downregulated, and those of TGFBR1, TGFBR2, target genes of miR-135b were upregulated in human AF tissues and negatively regulated by miR-135b in RCFs. Through inhibiting TGF-β/Smads pathway via promoting miR-135b expression, quercetin treatment inhibited proliferation, myofibroblast differentiation and collagen deposition in ISO-treated RCFs, as evidenced by reduced expressions of cyclin D1, α-SMA, collagen-related genes and proteins, and alleviated fibrosis and collagen deposition of atrial tissues in ISO-treated rats. CONCLUSION Quercetin may alleviate AF by inhibiting fibrosis of atrial tissues through inhibiting TGF-β/Smads pathway via promoting miR-135b expression.
Collapse
Affiliation(s)
- Hongtao Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China
| | - Wei Jiang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China
| | - Yanchao Hu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China
| | - Zhaofei Wan
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China
| | - Hongyuan Bai
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China
| | - Qiang Yang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China.
| |
Collapse
|
14
|
Sutthammikorn N, Supajatura V, Yue H, Takahashi M, Chansakaow S, Nakano N, Song P, Ogawa T, Ikeda S, Okumura K, Ogawa H, Niyonsaba F. Topical Gynura procumbens as a Novel Therapeutic Improves Wound Healing in Diabetic Mice. PLANTS 2021; 10:plants10061122. [PMID: 34205899 PMCID: PMC8228548 DOI: 10.3390/plants10061122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 01/10/2023]
Abstract
Nonhealing wounds are major socioeconomic challenges to healthcare systems worldwide. Therefore, there is a substantially unmet need to develop new drugs for wound healing. Gynura procumbens, a herb found in Southeast Asia, may be an effective therapeutic for nonhealing diabetic wounds. The aim of this study was to evaluate the efficacy of G. procumbens on wound healing in the diabetic milieu. G. procumbens extract was obtained using 95% ethanol and its components were determined by thin layer chromatography. Diabetes was induced in mice using streptozotocin. We found that G. procumbens extract contained stigmasterol, kaempferol and quercetin compounds. Topical application of G. procumbens on the wounded skin of diabetic mice accelerated wound healing and induced the expression of angiogenin, epidermal growth factor, fibroblast growth factor, transforming growth factor and vascular endothelial growth factor. Furthermore, G. procumbens promoted in vitro wound healing and enhanced the migration and/or proliferation of human endothelial cells, fibroblasts, keratinocytes and mast cells cultured in diabetic conditions. Finally, G. procumbens promoted vascular formation in the diabetic mice. To the best of our knowledge, this is the first study that evaluates in vivo wound healing activities of G. procumbens and activation of cells involved in wound healing process in diabetic conditions. The findings that G. procumbens accelerates wound healing and activates cells involved in the wound healing process suggest that G. procumbens might be an effective alternative therapeutic option for nonhealing diabetic wounds.
Collapse
Affiliation(s)
- Nutda Sutthammikorn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (V.S.)
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (H.Y.); (M.T.); (N.N.); (P.S.); (S.I.); (K.O.); (H.O.)
| | - Volaluck Supajatura
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (V.S.)
| | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (H.Y.); (M.T.); (N.N.); (P.S.); (S.I.); (K.O.); (H.O.)
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Miho Takahashi
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (H.Y.); (M.T.); (N.N.); (P.S.); (S.I.); (K.O.); (H.O.)
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Sunee Chansakaow
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (H.Y.); (M.T.); (N.N.); (P.S.); (S.I.); (K.O.); (H.O.)
| | - Pu Song
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (H.Y.); (M.T.); (N.N.); (P.S.); (S.I.); (K.O.); (H.O.)
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Takasuke Ogawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (H.Y.); (M.T.); (N.N.); (P.S.); (S.I.); (K.O.); (H.O.)
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (H.Y.); (M.T.); (N.N.); (P.S.); (S.I.); (K.O.); (H.O.)
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (H.Y.); (M.T.); (N.N.); (P.S.); (S.I.); (K.O.); (H.O.)
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (H.Y.); (M.T.); (N.N.); (P.S.); (S.I.); (K.O.); (H.O.)
- Faculty of International Liberal Arts, Juntendo University, Tokyo 113-8421, Japan
- Correspondence: ; Tel.: +81-3-5802-1896
| |
Collapse
|
15
|
Li J, Chou H, Li L, Li H, Cui Z. Wound healing activity of neferine in experimental diabetic rats through the inhibition of inflammatory cytokines and nrf-2 pathway. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2020; 48:96-106. [PMID: 31852261 DOI: 10.1080/21691401.2019.1699814] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022]
Abstract
The diabetic foot ulcer (DFU) may be associated with late healing and septic manifestation, subsequently lead to amputation which is an overpriced incident. Neferine is an alkaloid found lotus. Neferine possesses many physiological functions such as anti-inflammatory, antioxidant, antimicrobial activity and anticancer effect. The aim of the present study was to evaluate the effect of topical application based on neferine, in streptozotocin-induced diabetic incision wound models rats. The data demonstrated wound healing activities via macroscopic, biochemical, histological, immuno-histochemical, immunofluorescent and molecular methods. There was significant acceleration in wound closure rate, decrease in the period of re-epitalization, higher amount of collagen and protein content in neferine treated group when compared with diabetic wound control. Histological data evidence collagen formation in skin and marked granulation with more connective tissue markers. The augmentation of serum insulin and HDL was dissimilar with blood glucose reduction and decreased lipid level (TC, TG and LDL). The healing effect was additionally validated by decreased lipid peroxidation and enhanced antioxidants. Concurrently, the mRNA level of Nrf-2, collagen-1, TGF-β and α-SMA were decreased with Kaep-1 increased significantly. This enhancement was achieved through downregulation of inflammatory mediators such as nuclear factor kappa-light-chain-enhancer of activated B cells, tumour necrosis factor-α, interleukin-1β, interleukin-8, inducible nitric oxide synthase, and cyclooxygenase-2, and upregulation of growth factor such as in groups treated with neferine. The western blot results reveal the macrophage (CD 68 and CD 163) involved in wound healing markedly elevated. Hence, the results indicate that neferine significantly promotes a fast and efficient wound healing in diabetic rats.
Collapse
Affiliation(s)
- Juan Li
- Department of Plastic surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Plastic surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Haiyan Chou
- Department of Plastic surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Lei Li
- Department of Plastic surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hao Li
- Department of Plastic surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhengjun Cui
- Department of Burn surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
16
|
Demir U, Edremitlioğlu M, Kandaş E, Şehitoğlu MH, Kılınç N. Quercetin associated with dimethylsulfoxide has a curative effect on experimental colon anastomosis injury. Acta Cir Bras 2020; 35:e202000602. [PMID: 32667589 PMCID: PMC7357842 DOI: 10.1590/s0102-865020200060000002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/16/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose To examine the effects of quercetin on healing of experimental colon anastomosis injury in early and late period. Methods Eighty male Wistar-Albino rats were divided into 8 groups. For all groups, left colons of the rats were resected and for the rest end-to-end anastomosis was performed. Two of the groups for which the experiment protocol was ended on the 3rd and 7th day following the anastomosis were not administered with either quercetin or dimethylsulfoxide DMSO, whereas two other groups were administered with DMSO only, and four other groups were administered with quercetin dissolved in DMSO in doses of 20 and 100 mg/kg during the protocol. At the end of the study, anastomosis line was resected, histopathological evaluation was performed and bursting pressure, malondialdehyde, superoxide dismutase, catalase, and hydroxyproline levels were measured. Results Quercetin significantly increased hydroxyproline, superoxide dismutase, catalase levels, histopathological healing score, bursting pressure values and decreased malondialdehyde level in early period. It also significantly increased superoxide dismutase, catalase, and hydroxyproline levels and decreased malondialdehyde level in late period. Conclusion It was seen that quercetin speeds up the injury healing process and reveals an antioxidant effect, specifically in early period.
Collapse
Affiliation(s)
- Ufuk Demir
- Canakkale Onsekiz Mart University, Turkey
| | | | | | | | | |
Collapse
|
17
|
Setzer WN. The Phytochemistry of Cherokee Aromatic Medicinal Plants. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E121. [PMID: 30424560 PMCID: PMC6313439 DOI: 10.3390/medicines5040121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines.
Collapse
Affiliation(s)
- William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
| |
Collapse
|