1
|
Peng L, Wang X, He M, Sha X, Dou Z, Xiao L, Li W. Discrimination and screening of volatile metabolites in atractylodis rhizoma from different varieties using headspace solid-phase microextraction-gas chromatography-mass spectrometry and headspace gas chromatography-ion mobility spectrometry, and ultra-fast gas chromatography electronic nose. J Chromatogr A 2024; 1725:464931. [PMID: 38703457 DOI: 10.1016/j.chroma.2024.464931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 05/06/2024]
Abstract
Atractylodis rhizoma is a common bulk medicinal material with multiple species. Although different varieties of atractylodis rhizoma exhibit variations in their chemical constituents and pharmacological activities, they have not been adequately distinguished due to their similar morphological features. Hence, the purpose of this research is to analyze and characterize the volatile organic compounds (VOCs) in samples of atractylodis rhizoma using multiple techniques and to identify the key differential VOCs among different varieties of atractylodis rhizoma for effective discrimination. The identification of VOCs was carried out using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), resulting in the identification of 60 and 53 VOCs, respectively. The orthogonal partial least squares discriminant analysis (OPLS-DA) model was employed to screen potential biomarkers and based on the variable importance in projection (VIP ≥ 1.2), 24 VOCs were identified as critical differential compounds. Random forest (RF), K-nearest neighbor (KNN) and back propagation neural network based on genetic algorithm (GA-BPNN) models based on potential volatile markers realized the greater than 90 % discriminant accuracies, which indicates that the obtained key differential VOCs are reliable. At the same time, the aroma characteristics of atractylodis rhizoma were also analyzed by ultra-fast gas chromatography electronic nose (Ultra-fast GC E-nose). This study indicated that the integration of HS-SPME-GC-MS, HS-GC-IMS and ultra-fast GC E-nose with chemometrics can comprehensively reflect the differences of VOCs in atractylodis rhizoma samples from different varieties, which will be a prospective tool for variety discrimination of atractylodis rhizoma.
Collapse
Affiliation(s)
- Le Peng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xi Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Mulan He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xin Sha
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhiying Dou
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ling Xiao
- Hubei Institute for Drug Control/NMPA key Laboratory of Quality Control of Chinese Medicine/Hubei Engineering Research Center for Drug Quality Control, Wuhan 430075, China.
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Peng L, He M, Wang X, Guo S, Zhang Y, Li W. Fast Discrimination and Quantification Analysis of Atractylodis rhizoma Using NIR Spectroscopy Coupled with Chemometrics Tools. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7707-7715. [PMID: 38530236 DOI: 10.1021/acs.jafc.3c08812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In this study, near-infrared (NIR) spectroscopy and high-performance liquid chromatography (HPLC) combined with chemometrics tools were applied for quick discrimination and quantitative analysis of different varieties and origins of Atractylodis rhizoma samples. Based on NIR data, orthogonal partial least squares discriminant analysis (OPLS-DA) and K-nearest neighbor (KNN) models achieved greater than 90% discriminant accuracy of the three species and two origins of Atractylodis rhizoma. Moreover, the contents of three active ingredients (atractyloxin, atractylone, and β-eudesmol) in Atractylodis rhizoma were simultaneously determined by HPLC. There are significant differences in the content of the three components in the samples of Atractylodis rhizoma from different varieties and origins. Then, partial least squares regression (PLSR) models for the prediction of atractyloxin, atractylone, and β-eudesmol content were successfully established. The complete Atractylodis rhizoma spectra gave rise to good predictions of atractyloxin, atractylone, and β-eudesmol content with R2 values of 0.9642, 0.9588, and 0.9812, respectively. Based on the results of this present research, it can be concluded that NIR is a great nondestructive alternative to be applied as a rapid classification system by the drug industry.
Collapse
Affiliation(s)
- Le Peng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Mulan He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xi Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Shubo Guo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yazhong Zhang
- Anhui Institute for Food and Drug Control, Hefei 230051, China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Zhang C, Wang H, Lyu C, Wang Y, Sun J, Zhang Y, Xiang Z, Guo X, Wang Y, Qin M, Wang S, Guo L. Authenticating the geographic origins of Atractylodes lancea rhizome chemotypes in China through metabolite marker identification. FRONTIERS IN PLANT SCIENCE 2023; 14:1237800. [PMID: 37841605 PMCID: PMC10569125 DOI: 10.3389/fpls.2023.1237800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023]
Abstract
Introduction Atractylodes lancea is widely distributed in East Asia, ranging from Amur to south-central China. The rhizome of A. lancea is commonly used in traditional Chinese medicine, however, the quality of products varies across different regions with different geochemical characteristics. Method This study aimed to identify the chemotypes of A. lancea from different areas and screen for chemical markers by quantifying volatile organic compounds (VOCs) using a targeted metabolomics approach based on GC-MS/MS. Results The A. lancea distributed in Hubei, Anhui, Shaanxi, and a region west of Henan province was classified as the Hubei Chemotype (HBA). HBA is characterized by high content of β-eudesmol and hinesol with lower levels of atractylodin and atractylon. In contrast, the Maoshan Chemotype (MA) from Jiangsu, Shandong, Shanxi, Hebei, Inner Mongolia, and other northern regions, exhibited high levels of atractylodin and atractylon. A total of 15 categories of VOCs metabolites were detected and identified, revealing significant differences in the profiles of terpenoid, heterocyclic compound, ester, and ketone among different areas. Multivariate statistics indicated that 6 compounds and 455 metabolites could serve as candidate markers for differentiating A. lancea obtained from the southern, northern, and Maoshan areas. Discussion This comprehensive analysis provides a chemical fingerprint of selected A. lancea. Our results highlight the potential of metabolite profiling combined with chemometrics for authenticating the geographical origin of A. lancea.
Collapse
Affiliation(s)
- Chengcai Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongyang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chaogeng Lyu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiheng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiahui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zengxu Xiang
- College of Horticulture of Nanjing Agricultural University, Nanjing, China
| | - Xiuzhi Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuefeng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Qin
- Dexing Research and Training Center of Chinese Medical Sciences, China Academy of Chinese Medical Science, Dexing, China
| | - Sheng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Dexing Research and Training Center of Chinese Medical Sciences, China Academy of Chinese Medical Science, Dexing, China
| | - Lanping Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Ma Z, Liu G, Yang Z, Zhang G, Sun L, Wang M, Ren X. Species Differentiation and Quality Evaluation for Atractylodes Medicinal Plants by GC/MS Coupled with Chemometric Analysis. Chem Biodivers 2023; 20:e202300793. [PMID: 37485567 DOI: 10.1002/cbdv.202300793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
The utilization of rhizomes from the genus Atractylodes has been challenging due to their closely related origins. In this study, we developed an analytical strategy to differentiate Atractylodes lancea (A. lancea), Atractylodes chinensis (A. chinensis), Atractylodes japonica (A. japonica), and Atractylodes macrocephala (A. macrocephala), and compared their volatile compositions. Gas chromatography-mass spectrometry (GC/MS) was used to analyze the volatile profiles of essential oils extracted from 59 batches of samples. Chemometric methods enabled a better understanding of the differences in volatile oils between the four species and identified significant components affecting their classification and quality. A total of 50 volatile components were identified from the essential oils by GC/MS. Unsupervised and supervised chemometric analyses accurately distinguished A. lancea, A. chinensis, A. japonica, and A. macrocephala. Furthermore, five characteristic chemical markers, namely hinesol, β-eudesmol, atractylon, atractylodin and atractylenolide I, were obtained, and their respective percentage contents in individual species and samples were determined. This study provides a valuable reference for the quality evaluation of medicinal plants with essential oils and holds significance for species differentiation and the rational clinical application of Atractylodes herbs.
Collapse
Affiliation(s)
- Zicheng Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guoqiang Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zijie Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guoqin Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Meng Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|