1
|
Jang SN, Kang MJ, Kim YN, Jeong EJ, Cho KM, Yun JG, Son KH. Physiological and biochemical responses of Limonium tetragonum to NaCl concentrations in hydroponic solution. FRONTIERS IN PLANT SCIENCE 2023; 14:1159625. [PMID: 37180402 PMCID: PMC10170659 DOI: 10.3389/fpls.2023.1159625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023]
Abstract
Introduction Limonium (L.) tetragonum (Thunb.) A. A. Bullock, a halophyte that grows all over the southwest coast of Korea, is a medicinal plant with various pharmacological effects. The salt defense mechanism stimulates the biosynthesis of various secondary metabolites and improves functional substances. In this study, we investigated the optimal NaCl concentration for the growth and enhancement of secondary metabolites in hydroponically grown L. tetragonum. Methods The seedlings grown for 3 weeks in a hydroponic cultivation system were treated with 0-, 25-, 50-, 75-, and 100-mM NaCl in Hoagland's nutrient solution for 8 weeks. No significant effect on the growth and chlorophyll fluorescence was observed for the NaCl concentrations below 100-mM. Results and discussions The increase in the NaCl concentration resulted in the decrease in the water potential of the L. tetragonum leaves. The Na+ content accumulated in the aerial part increased rapidly and the content of K+, which acts as an antagonist, decreased with the increase in NaCl concentrations in hydroponics. The total amino acid content of L. tetragonum decreased compared to the 0-mM NaCl, and most of the amino acid content decreased as the NaCl concentration increased. In contrast, the content of urea, proline (Pro), β-alanine, ornithine, and arginine was increased with an increase in NaCl concentration. The Pro content at 100-mM NaCl accounted for 60% of the total amino acids and was found to be a major osmoregulator as an important component of the salt defense mechanisms. The top five compounds identified in the L. tetragonum were classified as flavonoids while the flavanone compound was detected only in the NaCl treatments. A total of four myricetin glycosides were increased in comparison to the 0-mM NaCl. Among the differentially expressed genes, a significantly large change in Gene ontology was seen in the circadian rhythm. NaCl treatment enhanced the flavonoid-based substances of L. tetragonum. The optimum NaCl concentration for the enhancement of secondary metabolites of the L. tetragonum in the vertical farm-hydroponic cultivation system was 75-mM NaCl.
Collapse
Affiliation(s)
- Seong-Nam Jang
- Department of GreenBio Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Min-Ji Kang
- Department of GreenBio Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Yun Na Kim
- Department of Plant and Biomaterials Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Eun Ju Jeong
- Department of GreenBio Science, Gyeongsang National University, Jinju, Republic of Korea
- Department of Plant and Biomaterials Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Kye Man Cho
- Department of GreenBio Science, Gyeongsang National University, Jinju, Republic of Korea
- Department of Food Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae Gil Yun
- Division of Horticultural Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Ki-Ho Son
- Department of GreenBio Science, Gyeongsang National University, Jinju, Republic of Korea
- Division of Horticultural Science, Gyeongsang National University, Jinju, Republic of Korea
- *Correspondence: Ki-Ho Son,
| |
Collapse
|
2
|
Limonium tetragonum Promotes Running Endurance in Mice through Mitochondrial Biogenesis and Oxidative Fiber Formation. Nutrients 2022; 14:nu14193904. [PMID: 36235564 PMCID: PMC9570989 DOI: 10.3390/nu14193904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to examine whether Limonium tetragonum, cultivated in a smart-farming system with LED lamps, could increase exercise capacity in mice. C57BL/6 male mice were orally administered vehicle or Limonium tetragonum water extract (LTE), either 30 or 100 mg/kg, and were subjected to moderate intensity treadmill exercise for 4 weeks. Running distance markedly increased in the LTE group (100 mg/kg) by 80 ± 4% compared to the vehicle group, which was accompanied by a higher proportion of oxidative fibers (6 ± 6% vs. 10 ± 4%). Mitochondrial DNA content and gene expressions related to mitochondrial biogenesis were significantly increased in LTE-supplemented gastrocnemius muscles. At the molecular level, the expression of PGC-1α, a master regulator of fast-to-slow fiber-type transition, was increased downstream of the PKA/CREB signaling pathway. LTE induction of the PKA/CREB signaling pathway was also observed in C2C12 cells, which was effectively suppressed by PKA inhibitors H89 and Rp-cAMP. Altogether, these findings indicate that LTE treatment enhanced endurance exercise capacity via an improvement in mitochondrial biosynthesis and the increases in the formation of oxidative slow-twitch fibers. Future study is warranted to validate the exercise-enhancing effect of LTE in the human.
Collapse
|
3
|
Li YT, Fu J, Wang HQ, Li Y, Liu YB, Ma SG, Qu J, Yu SS. New lignans and diterpenoid glycosides from the fruits of Xanthium italicum Moretti. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:518-527. [PMID: 34212783 DOI: 10.1080/10286020.2021.1938557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
A pair of new lignans [(+)- 1 and (-)- 1] and three new compounds (2-4), together with a known compound 5, were isolated from the fruits of Xanthium italicum Moretti. The structures of these compounds were determined on the basis of spectroscopic analysis, particularly HR-ESI-MS and 1 D and 2 D NMR. Compounds 2 and 3 showed antinociceptive effects in an acetic acid-induced writhing test in mice with the writhe inhibition rates of 80.50% and 67.89% at the dose of 20 mg/kg, respectively.
Collapse
Affiliation(s)
- Yu-Tong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Jiang Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hai-Qiang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yun-Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuang-Gang Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jing Qu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
4
|
Li K, Peng ZY, Gao S, Wang QS, Wang R, Li X, Xiao GD, Zhang J, Ren H, Tang SC, Sun X. M6A associated TSUC7 inhibition contributed to Erlotinib resistance in lung adenocarcinoma through a notch signaling activation dependent way. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:325. [PMID: 34656164 PMCID: PMC8520306 DOI: 10.1186/s13046-021-02137-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022]
Abstract
Background The small tyrosine kinase inhibitors (TKIs) subversively altered the lung cancer treatments, but patients will inevitably face the therapy resistance and disease recurrence. We aim to explore the potential roles of non-coding RNAs in sensitizing the TKIs effects. Methods: Multiple cellular and molecular detections were applied to confirm the mechanistic regulations and intracellular connections. Results We explored the specific gene features of candidates in association with resistance, and found that m6A controlled the stemness of EMT features through METTL3 and YTHDF2. The miR-146a/Notch signaling was sustained highly activated in a m6A dependent manner, and the m6A regulator of YTHDF2 suppressed TUSC7, both of which contributed to the resistant features. Functionally, the sponge type of TUSC7 regulation of miR-146a inhibited Notch signaling functions, and affected the cancer progression and stem cells’ renewal in Erlotinib resistant PC9 cells (PC9ER) and Erlotinib resistant HCC827 cells (HCC827ER) cells. The Notch signaling functions manipulated the cMYC and DICER inner cytoplasm, and the absence of either cMYC or DICER1 lead to TUSC7 and miR-146a decreasing respectively, formed the closed circle to maintain the balance. Conclusion PC9ER and HCC827ER cells harbored much more stem-like cells, and the resistance could be reversed by Notch signaling inactivation. The intrinsic miR-146 and TUSC7 levels are monitored by m6A effectors, the alternation of either miR-146 or TUSC7 expression could lead to the circling loop to sustain the new homeostasis. Further in clinics, the combined delivery of TKIs and Notch specific inhibitory non-coding RNAs will pave the way for yielding the susceptibility to targeted therapy in lung cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02137-9.
Collapse
Affiliation(s)
- Kai Li
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, 710061, Shaanxi Province, China
| | - Zi-Yang Peng
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, 710061, Shaanxi Province, China
| | - Shan Gao
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, 710061, Shaanxi Province, China
| | - Qing-Shi Wang
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, 710061, Shaanxi Province, China
| | - Rui Wang
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, 710061, Shaanxi Province, China
| | - Xiang Li
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, 710061, Shaanxi Province, China.,Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Guo-Dong Xiao
- Oncology Department, the First Affiliated Hospital of Zhengzhou University, Zheng Zhou City, 450052, Henan Province, China
| | - Jing Zhang
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, 710061, Shaanxi Province, China
| | - Hong Ren
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, 710061, Shaanxi Province, China
| | - Shou-Ching Tang
- University of Mississippi Medical Center, Cancer Center and Research Institute, 2500 North State Street, Jackson, MS, 39216, USA.
| | - Xin Sun
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, 710061, Shaanxi Province, China.
| |
Collapse
|
5
|
Singla RK, Agarwal T, He X, Shen B. Herbal Resources to Combat a Progressive & Degenerative Nervous System Disorder- Parkinson's Disease. Curr Drug Targets 2021; 22:609-630. [PMID: 33050857 DOI: 10.2174/1389450121999201013155202] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023]
Abstract
Parkinson's disease is one of the most common adult-onset, a chronic disorder involving neurodegeneration, which progressively leads to deprivation of dopaminergic neurons in substantia nigra, causing a subsequent reduction of dopamine levels in the striatum resulting in tremor, myotonia, and dyskinesia. Genetics and environmental factors are believed to be responsible for the onset of Parkinson's disease. The exact pathogenesis of Parkinson's disease is quite complicated and the present anti-Parkinson's disease treatments appear to be clinically insufficient. Comprehensive researches have demonstrated the use of natural products such as ginseng, curcumin, ashwagandha, baicalein, etc. for the symptomatic treatment of this disease. The neuroprotective effects exhibited by these natural products are mainly due to their ability to increase dopamine levels in the striatum, manage oxidative stress, mitochondrial dysfunction, glutathione levels, clear the aggregation of α- synuclein, induce autophagy and decrease the pro-inflammatory cytokines and lipid peroxidation. This paper reviews various natural product studies conducted by scientists to establish the role of natural products (both metabolite extracts as well as pure metabolites) as adjunctive neuroprotective agents.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Tanya Agarwal
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna Road, Gurugram-122103, India
| | - Xuefei He
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Muller AG, Sarker SD, Saleem IY, Hutcheon GA. Delivery of natural phenolic compounds for the potential treatment of lung cancer. Daru 2019; 27:433-449. [PMID: 31115871 PMCID: PMC6593021 DOI: 10.1007/s40199-019-00267-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
The application of natural products to treat various diseases, such as cancer, has been an important area of research for many years. Several phytochemicals have demonstrated anticarcinogenic activity to prevent or reduce the progression of cancer by modulating various cellular mechanisms. However, poor bioavailability has hindered clinical success and the incorporation of these drugs into efficient drug delivery systems would be beneficial. For lung cancer, local delivery via the pulmonary route would also be more effective. In this article, recent in vitro scientific literature on phenolic compounds with anticancer activity towards lung cancer cell lines is reviewed and nanoparticulate delivery is mentioned as a possible solution to the problem of bioavailability. The first part of the review will explore the different classes of natural phenolic compounds and discuss recent reports on their activity on lung cancer cells. Then, the problem of the poor bioavailability of phenolic compounds will be explored, followed by a summary of recent advances in improving the efficacy of these phenolic compounds using nanoparticulate drug delivery systems. Graphical abstract The rationale for direct delivery of phenolic compounds loaded in microparticles to the lungs.
Collapse
Affiliation(s)
- Ashley G Muller
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom Street, Liverpool, L3 3AF, UK.
| | - Satyajit D Sarker
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom Street, Liverpool, L3 3AF, UK
| | - Imran Y Saleem
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom Street, Liverpool, L3 3AF, UK
| | - Gillian A Hutcheon
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
7
|
Kim TW, Lee SY, Kim M, Cheon C, Ko SG. Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells. Cell Death Dis 2018; 9:875. [PMID: 30158521 PMCID: PMC6115440 DOI: 10.1038/s41419-018-0930-1] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/11/2018] [Accepted: 07/25/2018] [Indexed: 01/19/2023]
Abstract
Kaempferol, a flavonoid, found in traditional medicine, fruits, and vegetables, and an HDAC inhibitor, is a powerful anti-cancer reagent against various cancer cell lines. However, detailed mechanisms involved in the treatment of gastric cancer (GC) using kaempferol are not fully understood. In our study, we investigated the biological activity and molecular mechanism involved in kaempferol-mediated treatment of GC. Kaempferol promoted autophagy and cell death, and increased LC3-I to LC3-II conversion and the downregulation of p62 in GC. Furthermore, our results showed that kaempferol induces autophagic cell death via the activation of the IRE1-JNK-CHOP signaling, indicating ER stress response. Indeed, the inhibition of ER stress suppressed kaempferol-induced autophagy and conferred prolonged cell survival, indicating autophagic cell death. We further showed that kaempferol mediates epigenetic change via the inhibition of G9a (HDAC/G9a axis) and also activates autophagic cell death. Taken together, our findings indicate that kaempferol activates the IRE1-JNK-CHOP signaling from cytosol to nucleus, and G9a inhibition activates autophagic cell death in GC cells.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Seon Young Lee
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Mia Kim
- Department of Cardiovascular and Neurologic disease (Stroke center), College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Chunhoo Cheon
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea.
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea.
| |
Collapse
|