1
|
Zhang L, Wang W, Liu X, Yan K, Li Q, Li M, Li C, Li Y, Chen L. Traditional Chinese medicine compounds modulate signaling pathways to improve cardiac-related pathology. Front Pharmacol 2025; 16:1499060. [PMID: 40242436 PMCID: PMC12000890 DOI: 10.3389/fphar.2025.1499060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Cardiovascular disease poses a significant risk to human health and remains the leading cause of illness and death globally, with its incidence continuing to rise. The intricate pathophysiological mechanisms of CVDs include inflammation, oxidative stress, autophagy, and myocardial fibrosis. In light of these underlying mechanisms, traditional Chinese medicine (TCM) and its constituents have demonstrated distinct advantages in managing CVDs. By exerting synergistic effects across multiple components and targets, traditional Chinese medicine can modulate the inflammatory response, mitigate oxidative stress, regulate excessive autophagy, and enhance myocardial fibrosis repair. This article reviews the latest advancements in understanding how TCM compounds regulate signaling pathways involved in the treatment of CVDs.
Collapse
Affiliation(s)
- Luwen Zhang
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Wei Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan Province Traditional Chinese Medicine Epidemic Diseases Engineering Research Center, Zhengzhou, Henan, China
| | - Xincan Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Kuipo Yan
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Qiang Li
- The First Affiliated Hospital of Hena University of Chinese Medicine, Henan Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Ming Li
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Chunying Li
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Yanxin Li
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Lei Chen
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Chen S, Huang J, Huang Y, Zhou C, Wang N, Zhang L, Zhang Z, Li B, He X, Wang K, Zhi Y, Lv G, Shen S. Metabolomics analyses reveal the liver-protective mechanism of Wang's metabolic formula on metabolic-associated fatty liver disease. Heliyon 2024; 10:e33418. [PMID: 39040343 PMCID: PMC11261804 DOI: 10.1016/j.heliyon.2024.e33418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Wang's metabolic formula (WMF) is a traditional Chinese medicine formula developed under the guidance of Professor Kungen Wang. WMF has been clinically utilized for several years. However, the therapeutic mechanism of WMF in treating metabolic-associated fatty liver disease (MAFLD) remains unclear. In this study, we performed phytochemical analysis on WMF using LC-MS. To study the role of WMF in MAFLD, we orally administered WMF (20.6 g/kg) to male MAFLD mice induced by a high-cholesterol high-fat diet (HCHFD). Then pathological, biochemical, and metabolomic analyses were performed. The main components of WMF are chlorogenic acid, geniposide, albiflorin, paeoniflorin, and calycosin-7-O-glucoside. MAFLD mice treated with WMF exhibited significant improvements in obesity, abnormal lipid metabolism, inflammation, and liver pathology. WMF decreased aspartate aminotransferase (AST), alanine aminotransferase (ALT), and triglyceride (TG) levels in the serum of MAFLD mice while increasing high-density lipoprotein cholesterol (HDL-c) levels. WMF lowered liver TG levels and inflammatory factors (IL-1β, IL-6, TNF-α, and NF-κB). Metabolomic analysis of the liver annotated 78 differentially regulated metabolites enriched in four pathways: glycerophospholipid metabolism, retinol metabolism, PPAR signaling pathway, and choline metabolism. Western blot experiments showed that WMF increased the expression of PPAR-α, PPAR-β, and RXR in the liver while decreasing the expression of RAR. The study demonstrates that WMF has a solid preventive and therapeutic effect on MAFLD. The anti-inflammatory and regulation of abnormal liver metabolism activities of WMF involve retinol metabolism and the PPAR signaling pathway.
Collapse
Affiliation(s)
- Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Jiahui Huang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Yuzhen Huang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Chengliang Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Ning Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Linnan Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Zehua Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Xinglishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Kungen Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
- Kungen Wang National Famous Chinese Medicine Doctor Studio, Hangzhou, Zhejiang, 310006, China
| | - Yihui Zhi
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
- Kungen Wang National Famous Chinese Medicine Doctor Studio, Hangzhou, Zhejiang, 310006, China
| | - Guiyuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Shuhua Shen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
- Kungen Wang National Famous Chinese Medicine Doctor Studio, Hangzhou, Zhejiang, 310006, China
| |
Collapse
|
3
|
Huang M, Wang T, Wang Y, Deng Q, Chen J, Li L, Luo H, Lu Y. Marine sourced tripeptide SRP and its sustained-release formulation SRP-PLGA-MS exhibiting antihypertensive effect in spontaneously hypertensive rats and HUVECs. Front Nutr 2024; 11:1423098. [PMID: 38933890 PMCID: PMC11199895 DOI: 10.3389/fnut.2024.1423098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Biopeptides from Sipunculus nudus were reported with good ACE inhibitory activity, and the tripeptide SRP was one with the highest ACE inhibition rate. However, the disadvantage of short half-life limited the development of peptide drugs. Moreover, the distinct mechanism of the peptide inhibiting ACE remained unknown. Thus, in this study, a sustained release formulation of SRP-PLGA-MS was designed and prepared. Its long-lasting antihypertensive effect as well as improvement of vascular pathomorphology was verified in spontaneously hypertensive rat (SHR). In addition, the anti-oxidant activity of SRP in human umbilical vein endothelial cells (HUVECs) was evaluated. The results showed that SRP inhibited the production of ROS and NO, which involve the NADPH oxidase, and Keap1/Nrf2 signaling pathway. This study demonstrated that SRP-PLGA-MS had the potential to develop sustained-release drugs for hypertension treatment.
Collapse
Affiliation(s)
- Miaoen Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- College of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Tianji Wang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- College of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Yinghao Wang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- Zhanjiang Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Qingyan Deng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- College of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Jinjun Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- Zhanjiang Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Li Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- College of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- College of Pharmacy, Guangdong Medical University, Zhanjiang, China
- Zhanjiang Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yingnian Lu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- College of Pharmacy, Guangdong Medical University, Zhanjiang, China
- Zhanjiang Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
4
|
Kim MJ, Kim CR, Park CS, Kang H, Cho YS, Yeom DH, Kim MJ, Han JH, Ji HB, Cho YC, Min CH, Kim DY, Lee JW, Lee C, Lee SP, Choy YB. Batteryless implantable device with built-in mechanical clock for automated and precisely timed drug administration. Proc Natl Acad Sci U S A 2023; 120:e2315824120. [PMID: 38096418 PMCID: PMC10741381 DOI: 10.1073/pnas.2315824120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Adherence to medication plays a crucial role in the effective management of chronic diseases. However, patients often miss their scheduled drug administrations, resulting in suboptimal disease control. Therefore, we propose an implantable device enabled with automated and precisely timed drug administration. Our device incorporates a built-in mechanical clock movement to utilize a clockwork mechanism, i.e., a periodic turn of the hour axis, enabling automatic drug infusion at precise 12-h intervals. The actuation principle relies on the sophisticated design of the device, where the rotational movement of the hour axis is converted into potential mechanical energy and is abruptly released at the exact moment for drug administration. The clock movement can be charged either automatically by mechanical agitations or manually by winding the crown, while the device remains implanted, thereby enabling the device to be used permanently without the need for batteries. When tested using metoprolol, an antihypertensive drug, in a spontaneously hypertensive animal model, the implanted device can deliver drug automatically at precise 12-h intervals without the need for further attention, leading to similarly effective blood pressure control and ultimately, prevention of ventricular hypertrophy as compared with scheduled drug administrations. These findings suggest that our device is a promising alternative to conventional methods for complex drug administration.
Collapse
Affiliation(s)
- Min Ji Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Cho Rim Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Chan Soon Park
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul03080, Republic of Korea
| | - Hyejeong Kang
- Center for Nanoparticle Research, Institute for Basic Science, Seoul08826, Republic of Korea
| | - Ye Seul Cho
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul03080, Republic of Korea
| | - Da-Hae Yeom
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul03080, Republic of Korea
| | - Myoung Ju Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Jae Hoon Han
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Han Bi Ji
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Yong Chan Cho
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Chang Hee Min
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul03080, Republic of Korea
| | - Do Yeon Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Ji Won Lee
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul03080, Republic of Korea
| | - Seung-Pyo Lee
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul03080, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science, Seoul08826, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul03080, Republic of Korea
| | - Young Bin Choy
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul08826, Republic of Korea
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul03080, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul03080, Republic of Korea
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul08826, Republic of Korea
- ToBIOs Inc., Seongbuk-gu, Seoul02880, Republic of Korea
| |
Collapse
|
5
|
Li X, Sun C, Zhang J, Hu L, Yu Z, Zhang X, Wang Z, Chen J, Wu M, Liu L. Protective effects of paeoniflorin on cardiovascular diseases: A pharmacological and mechanistic overview. Front Pharmacol 2023; 14:1122969. [PMID: 37324475 PMCID: PMC10267833 DOI: 10.3389/fphar.2023.1122969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/10/2023] [Indexed: 06/17/2023] Open
Abstract
Background and ethnopharmacological relevance: The morbidity and mortality of cardiovascular diseases (CVDs) are among the highest of all diseases, necessitating the search for effective drugs and the improvement of prognosis for CVD patients. Paeoniflorin (5beta-[(Benzoyloxy)methyl] tetrahydro-5-hydroxy-2-methyl-2,5-methano-1H-3,4-dioxacyclobuta [cd] pentalen-1alpha (2H)-yl-beta-D-glucopyranoside, C23H28O11) is mostly derived from the plants of the family Paeoniaceae (a single genus family) and is known to possess multiple pharmacological properties in the treatment of CVDs, making it a promising agent for the protection of the cardiovascular system. Aim of the study: This review evaluates the pharmacological effects and potential mechanisms of paeoniflorin in the treatment of CVDs, with the aim of advancing its further development and application. Methods: Various relevant literatures were searched in PubMed, ScienceDirect, Google Scholar and Web of Science. All eligible studies were analyzed and summarized in this review. Results: Paeoniflorin is a natural drug with great potential for development, which can protect the cardiovascular system by regulating glucose and lipid metabolism, exerting anti-inflammatory, anti-oxidative stress, and anti-arteriosclerotic activities, improving cardiac function, and inhibiting cardiac remodeling. However, paeoniflorin was found to have low bioavailability, and its toxicology and safety must be further studied and analyzed, and clinical studies related to it must be carried out. Conclusion: Before paeoniflorin can be used as an effective therapeutic drug for CVDs, further in-depth experimental research, clinical trials, and structural modifications or development of new preparations are required.
Collapse
Affiliation(s)
- Xiaoya Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changxin Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Lanqing Hu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaonan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zeping Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiye Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Liao HH, Chen HT, Livneh H, Huang HL, Lai NS, Lu MC, Yeh CC, Tsai TY. Integration of Chinese Herbal Medicine into Routine Care Was Related to Lower Risk of Chronic Kidney Disease in Patients with Rheumatoid Arthritis: A Population-Based Nested Case-Control Study in Taiwan. J Multidiscip Healthc 2023; 16:1191-1201. [PMID: 37153357 PMCID: PMC10155711 DOI: 10.2147/jmdh.s400917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/22/2023] [Indexed: 05/09/2023] Open
Abstract
Objective Non-steroidal anti-inflammatory drugs (NSAIDs) are frequently used as the first-line agents for the symptomatic relief of rheumatoid arthritis (RA), but it may insidiously provoke the onset of renal diseases, especially chronic kidney disease (CKD). While Chinese herbal medicine (CHM) has become an increasingly popular adjunctive therapy among RA groups, there are currently no available data on the effect of CHM use towards risk of CKD. This study aimed to explore on a population-level whether CHM use decreases sequent CKD risk among them. Methods In this nested case-control study retrieved from the nationwide insurance database of Taiwan from 2000 to 2012, we looked at the association between CHM use and the likelihood of developing CKD, with a focus on usage intensity. Cases with CKD claims were defined and matched to one randomly selected control case. Conditional logistic regression was then applied to estimate odds ratio (OR) of CKD from CHM treatment measured before the index date. For each OR, we calculated a 95% confidence interval for CHM use relative to the matched control. Results This nested case-control study included 5464 patients with RA, where after matching comprised 2712 cases and 2712 controls. Among them, there were 706 and 1199 cases that ever received CHM treatment, respectively. After the adjustment, CHM use in RA individuals was related to a lower likelihood of CKD, with an adjusted OR of 0.49 (95% CI: 0.44-0.56). Additionally, a dose-dependent, reverse association was found between the cumulative duration of CHM use and risk of CKD. Conclusion Integrating CHM into conventional therapy may reduce the likelihood of developing CKD, which could be a reference in instituting novel preventive strategies to improve treatment outcomes and reduce related fatalities for RA subjects.
Collapse
Affiliation(s)
- Hou-Hsun Liao
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Hsiao-Tien Chen
- Department of Chinese Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Hanoch Livneh
- Rehabilitation Counseling Program, Portland State University, Portland, OR, USA
| | - Hua-Lung Huang
- Department of Rehabilitation, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| | - Ning-Sheng Lai
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Allergy, Immunology and Rheumatology, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| | - Ming-Chi Lu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Allergy, Immunology and Rheumatology, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| | - Chia-Chou Yeh
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
- Correspondence: Chia-Chou Yeh; Tzung-Yi Tsai, Tel +886-5-2648000-8713; +886-5-2648000 ext. 3209, Fax +886-5-2648006, Email ;
| | - Tzung-Yi Tsai
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Research, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| |
Collapse
|
7
|
Li B, Wang HY, Huang JH, Xu WF, Feng XJ, Xiong ZP, Dong YJ, Li LZ, He X, Wu HS, Zhang K, Su J, Yu QX, Jiang NH, Lv GY, Chen SH. Polysaccharide, the Active Component of Dendrobium officinale, Ameliorates Metabolic Hypertension in Rats via Regulating Intestinal Flora-SCFAs-Vascular Axis. Front Pharmacol 2022; 13:935714. [PMID: 35899110 PMCID: PMC9310040 DOI: 10.3389/fphar.2022.935714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Metabolic hypertension (MH) is the most common type of hypertension worldwide because of unhealthy lifestyles, such as excessive alcohol intake and high-sugar/high-fat diets (ACHSFDs), adopted by humans. Poor diets lead to a decrease in the synthesis of short-chain fatty acids (SCFAs), which are produced by intestinal flora and transferred by G protein-coupled receptors (GPCRs), resulting in impaired gastrointestinal function, disrupted metabolic processes, increased blood pressure (BP), and ultimately, MH. It is not clear whether Dendrobium officinale polysaccharide (DOPS) can mediate its effects by triggering the SCFAs-GPCR43/41 pathway. In this study, DOPS, with a content of 54.45 ± 4.23% and composition of mannose, glucose, and galacturonic acid at mass percentages of 61.28, 31.87, and 2.53%, was isolated from Dendrobium officinale. It was observed that DOPS, given to rats by intragastric administration after dissolution, could lower the BP and improve the abnormal lipid metabolic processes in ACHSFD-induced MH rats. Moreover, DOPS was found to increase the production, transportation, and utilization of SCFAs, while improving the intestinal flora and strengthening the intestinal barrier, as well as increasing the intestinal levels of SCFAs and the expression of GPCR43/41. Furthermore, DOPS improved vascular endothelial function by increasing the expression of GPCR41 and endothelial nitric oxide synthase in the aorta and the nitric oxide level in the serum. However, these effects were all reversed by antibiotic use. These findings indicate that DOPS is the active component of Dendrobium officinale, and it can reverse MH in rats by activating the intestinal SCFAs-GPCR43/41 pathway.
Collapse
Affiliation(s)
- Bo Li
- Zhejiang University of Technology, Hangzhou, China
| | | | | | - Wan-Feng Xu
- Zhejiang University of Technology, Hangzhou, China
| | | | | | | | - Lin-Zi Li
- Zhejiang University of Technology, Hangzhou, China
| | | | - Han-Song Wu
- Zhejiang University of Technology, Hangzhou, China
| | - Ke Zhang
- Zhejiang University of Technology, Hangzhou, China
| | - Jie Su
- Zhejiang University of Technology, Hangzhou, China
| | - Qiao-Xian Yu
- Zhejiang Senyu Co., Ltd, Yiwu, China
- *Correspondence: Qiao-Xian Yu, ; Ning-Hua Jiang, ; Gui-Yuan Lv, ; Su-Hong Chen,
| | - Ning-Hua Jiang
- The Second Affiliated Hospital of Jiaxing University, Jaxing, China
- *Correspondence: Qiao-Xian Yu, ; Ning-Hua Jiang, ; Gui-Yuan Lv, ; Su-Hong Chen,
| | - Gui-Yuan Lv
- Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Qiao-Xian Yu, ; Ning-Hua Jiang, ; Gui-Yuan Lv, ; Su-Hong Chen,
| | - Su-Hong Chen
- Zhejiang University of Technology, Hangzhou, China
- *Correspondence: Qiao-Xian Yu, ; Ning-Hua Jiang, ; Gui-Yuan Lv, ; Su-Hong Chen,
| |
Collapse
|
8
|
Xiong T, Zheng X, Zhang K, Wu H, Dong Y, Zhou F, Cheng B, Li L, Xu W, Su J, Huang J, Jiang Z, Li B, Zhang B, Lv G, Chen S. Ganluyin ameliorates DSS-induced ulcerative colitis by inhibiting the enteric-origin LPS/TLR4/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115001. [PMID: 35085745 DOI: 10.1016/j.jep.2022.115001] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD), that is associated with a significantly increased risk of colon cancer. As a classic traditional Chinese medicine, Ganluyin (GLY) has a long history as an anti-inflammatory medication, but its impacts on UC has not been established. AIM OF THE STUDY This study aims to evaluate the protective effect and mechanism of GLY on a pathway involving enteric-origin lipopolysaccharide (LPS), toll-like receptor (TLR)4, and NF-κB in mice with dextran sulfate sodium (DSS)-induced UC. MATERIALS AND METHODS After three weeks of intragastric administration of GLY, a UC model was induced in mice by administration of 4% DSS in drinking water for one week. The disease activity index (DAI) was measured, and histological staining was used to detect histopathological changes of colon. LPS content of the serum was measured by ELISA, and the expression of tight junction proteins and proteins related to TLR4/NF-κB pathway in colon were analyzed by immunohistochemistry or Western Blotting. The intestinal flora was analyzed by 16S rRNA sequencing. RESULTS GLY improved the histological pathological changes of DSS-induced UC, as assessed by DAI, colonic mucosal damage, inflammatory cell infiltration, and goblet cell and mucus reduction. GLY also protected the intestinal mucosal barrier by increasing the expression of the tight junction proteins, occludin, claudin-1, and ZO-1 and by reducing the serum LPS content and decreasing the expression of TLR4, MyD88, NF-κB, IL-6, IL-1β, and TNF-α proteins in colon. Analyses of the intestinal flora showed that GLY restored the homeostasis of the intestinal flora through increases in the abundance of Firmicutes and decreases in the abundance of Proteobacteria and Bacteroidetes, which is associated with the production of LPS. CONCLUSION GLY might exert an anti-UC effect by improving the colonic mucosal barrier and inhibiting the enteric-origin LPS/TLR4/NF-κB inflammatory pathway, and restoring the homeostasis of the intestinal flora in UC mice. These discoveries lay a strong foundation for GLY as a UC treatment.
Collapse
Affiliation(s)
- Taoxiu Xiong
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Xiang Zheng
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Ke Zhang
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Hansong Wu
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Yingjie Dong
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Fuchen Zhou
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Bingbing Cheng
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Linzi Li
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Wanfeng Xu
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Jie Su
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Jiahui Huang
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Zetian Jiang
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Bo Li
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Beibei Zhang
- Center for Food Evaluation, State Administration for Market Regulation, Beijing, 100070, PR China.
| | - Guiyuan Lv
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Suhong Chen
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China.
| |
Collapse
|
9
|
Wu J, Zhang D, Hu L, Zheng X, Chen C. Paeoniflorin alleviates NG-nitro-L-arginine methyl ester (L-NAME)-induced gestational hypertension and upregulates silent information regulator 2 related enzyme 1 (SIRT1) to reduce H 2O 2-induced endothelial cell damage. Bioengineered 2022; 13:2248-2258. [PMID: 35030965 PMCID: PMC8973614 DOI: 10.1080/21655979.2021.2024325] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pregnancy-induced hypertension (PIH) is a leading cause of maternal mortality. Paeoniflorin has been reported to alleviate hypertension, thus relieving the injury of target organ. This study aimed to investigate the role of paeoniflorin in PIH development by regulating SIRT1 in rats. The mean arterial pressure (MAP), urine protein and histopathological damage of placenta in gestational hypertension rats were, respectively, detected by noninvasive tail-artery pressure measuring instrument, BCA method and H&E staining. The viability of human umbilical vein endothelial cells (HUVECs) treated with paeoniflorin or/and H2O2 was observed by CCK-8 assay. SIRT1 protein expression in HUVECs treated with paeoniflorin or/and H2O2 was analyzed by Western blot. Tunel assay, wound healing assay and tube formation assay were used to detect the apoptosis, migration and tube formation of HUVECs administrated with paeoniflorin or/and H2O2 or/and EX527 (SIRT1 inhibitor). As a result, MAP, urine protein and histopathological damage of placenta were enhanced in PIH rats, which were then alleviated by paeoniflorin. Paeoniflorin decreased the levels of sFlt-1, PlGF and VEGF in serum and placental tissues of gestational hypertension rats as well as the inflammatory response and oxidative stress. In addition, paeoniflorin promoted the expressions of SIRT1 and NO/eNOS and inhibited the production of iNOS in gestational hypertension rats to improve vascular endothelial cell injury. However, SIRT1 inhibition could suppress the protective effects of paeoniflorin on endothelial dysfunction of H2O2-induced HUVECs. In conclusion, paeoniflorin could improve gestational hypertension development by upregulating SIRT1.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
| | - Dongmei Zhang
- Department of Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
| | - Linlin Hu
- Department of Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
| | - Xiaowei Zheng
- Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
| | - Caihong Chen
- Department of Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
| |
Collapse
|
10
|
Li B, He X, Jin HY, Wang HY, Zhou FC, Zhang NY, Jie DY, Li LZ, Su J, Zheng X, Luo R, Lv GY, Jiang NH, Yu QX, Chen SH. Beneficial effects of Dendrobium officinale on metabolic hypertensive rats by triggering the enteric-origin SCFA-GPCR43/41 pathway. Food Funct 2021; 12:5524-5538. [PMID: 34002173 DOI: 10.1039/d0fo02890h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Given the increasing global trend toward unhealthy lifestyles and dietary decisions, such as "over-consumption of alcohol, and high sugar and fat diets" (ACHSFDs), it is not surprising that metabolic hypertension (MH) is now the most common type of hypertension. There is an urgent, global need for effective measures for the prevention and treatment of MH. Improper diet leads to decreased short-chain fatty acid (SCFA) production in the gut, leading to decreased gastrointestinal function, metabolism, and blood pressure as a result of signaling through G-protein-coupled receptors (GPCRs), ultimately causing MH. Previous studies have suggested that Dendrobium officinale (DO) may improve gastrointestinal function, lower blood pressure, and regulate metabolic abnormalities, but it is not clear whether it acts on MH by increasing SCFA and, if so, how. In this research, it was observed that Dendrobium officinale ultrafine powder (DOFP) could lower blood pressure and improve lipid abnormalities in ACHSFD-induced MH model rats. Moreover, DOFP was found to improve the intestinal flora and increased the SCFA level in feces and serum, as well as increased the expressions of GPCR43/41 and eNOS and the nitric oxide (NO) level. An experiment on isolated aorta rings revealed that DOFP improved the vascular endothelial relaxation function in MH rats, and this effect could be blocked by the eNOS inhibitor l-NAME. These experimental results suggest that DOFP improved the intestinal flora and increased the production, transportation, and utilization of SCFA, activated the intestinal-vascular axis SCFA-GPCR43/41 pathway, improved vascular endothelial function, and finally lowered blood pressure in MH model rats. This research provides a new focus for the mechanism of the effect of DOFP against MH by triggering the enteric-origin SCFA-GPCR43/41 pathway.
Collapse
Affiliation(s)
- Bo Li
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dendrobium officinale Regulates Fatty Acid Metabolism to Ameliorate Liver Lipid Accumulation in NAFLD Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6689727. [PMID: 34122607 PMCID: PMC8189787 DOI: 10.1155/2021/6689727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022]
Abstract
Dendrobium officinale (DOF) is a traditional Chinese edible and officinal plant. Ultrafine DOF powder (DOFP) can regulate lipids and histopathology in the liver, but the underlying mechanisms of hepatic fatty acid (FA) metabolism, which is generally correlated with the development of nonalcoholic fatty liver disease (NAFLD), remain unclear. The purpose of the present study was to investigate whether DOFP treatment alters hepatic FA metabolism in NAFLD mice by using multidimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) and analyse the underlying mechanisms. A 3-week DOFP treatment prevented lipid deposition and improved hepatic histopathology in NAFLD mice after withdrawal from the high-sucrose, high-fat (HSHF) diet, and it decreased triglyceride and FA content in the liver. Furthermore, the C16 : 0/C14 : 0 and C18 : 1/18 : 0 ratios in FAs were significantly decreased in the DOFP treatment group, and the C20 : 4/C20 : 3 and C22 : 4/C22 : 3 ratios were increased, and saturated FA was inhibited. Additionally, DOFP treatment significantly increased the content of two FA β-oxidation-related proteins (carnitine palmitoyltransferase 1-α and acyl-coenzyme A oxidase 1). It also decreased the content of a FA synthesis-related protein (fatty acid synthase), a FA desaturation-related protein (stearoyl-coenzyme A desaturase-1), and a FA uptake-related protein (fatty acid transport protein 2). Moreover, DOFP treatment improved dysregulated levels of major phospholipids in the livers of model mice. The results of this study confirm that DOFP treatment in NAFLD mice has liver recovery effects by regulating FA metabolism.
Collapse
|
12
|
Chen YH, Lei SS, Li B, Luo R, He X, Wang YZ, Zhou FC, Lv GY, Chen SH. Systematic Understanding of the Mechanisms of Flos Chrysanthemi Indici-mediated Effects on Hypertension via Computational Target Fishing. Comb Chem High Throughput Screen 2021; 23:92-110. [PMID: 31969096 DOI: 10.2174/1386207323666200122105410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 02/08/2023]
Abstract
AIMS AND OBJECTIVE Hypertension-induced stroke and coronary artery disease are significant causes of global morbidity and mortality. Metabolic hypertension has recently become the leading cause of hypertension. Flos Chrysanthemi Indici (CIF) has a long history as a treatment of hypertension as part of traditional Chinese medicine. However, its mechanisms of activity remain largely unknown. This study was aimed to uncover the potential anti-hypertensive mechanisms of CIF based on network pharmacology. MATERIALS AND METHODS In this research, a systems pharmacology approach integrating the measurement of active compounds, target fishing, gene screening, Gene Ontology (GO) pathway analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology Based Annotation System (KOBAS) database analysis, and compound-target network construction were performed to explore the anti-hypertensive mechanisms of CIF. RESULTS These studies revealed that 12 bioactive compounds in CIF had good druggability, 5 of which were flavonoids. After screening, 8 of those 12 bioactive compounds interacted with 118 hypertensionrelated target genes, which were mapped to 218 signal pathways. Network analysis showed that these targets were associated with improving insulin resistance, improving vascular function, inhibiting renninangiotensin- aldosterone system (RAAS), inhibiting the sympathetic nervous system (SNS) and regulating other physiological processes. CONCLUSION In summary, CIF is predicted to target multiple proteins and pathways to form a network that exerts systematic pharmacological effects in order to regulate blood pressure and metabolic disorder.
Collapse
Affiliation(s)
- Ye-Hui Chen
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Shan-Shan Lei
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Bo Li
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Rong Luo
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xinglishang He
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yu-Zhi Wang
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Fu-Chen Zhou
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Gui-Yuan Lv
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Su-Hong Chen
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
13
|
Zhao X, Jin Y, Yuan X, Hou Z, Chen Z, Fu X, Li Q, Wang J, Zhang Y. Covalent Inhibitor-Based One-Step Method for Endothelin Receptor A Immobilization: from Ligand Recognition to Lead Identification. Anal Chem 2020; 92:13750-13758. [DOI: 10.1021/acs.analchem.0c01807] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yahui Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xinyi Yuan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Zhaoling Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Ziyue Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xiaoying Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yajun Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
14
|
Chen YH, Luo R, Lei SS, Li B, Zhou FC, Wang HY, Chen X, He X, Wang YZ, Zhan LH, Lu TT, Su J, Yu QX, Li B, Lv GY, Chen SH. Anti-inflammatory effect of Ganluyin, a Chinese classic prescription, in chronic pharyngitis rat model. BMC Complement Med Ther 2020; 20:265. [PMID: 32859182 PMCID: PMC7456022 DOI: 10.1186/s12906-020-03057-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/19/2020] [Indexed: 12/28/2022] Open
Abstract
Background Ganluyin (GLY) is a famous classical prescription with a long history of use as a treatment for inflammatory conditions such as chronic pharyngitis (CP) in many parts of China. However, it has not been developed as a modern pharmaceutic and its anti-inflammatory mechanisms remain unclear. The aim of this study was to assess the anti-inflammatory efficacy of GLY and potential mechanisms in a rat model of CP. Methods The chemical profile of GLY was analyzed by HPLC-UV. We used a mouse model of ear edema and a rat model of paw edema. Specifically, xylene was used to induce edema on the surface of one ear in mice, and carrageenan was injected subcutaneously into the right hind paws of rats to induce paw edema. The paw thickness, ear weight, and ear perfusion were measured and recorded. The CP model in rats was induced by irritating the throat with 5% ammonia and was used to evaluate the therapeutic efficacy of GLY. Levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor (TNF-α), and prostaglandin E2 (PGE2) were measured by ELISA in serum, and protein expression of cyclooxygenase-2 (COX-2) and nuclear factor kappa-B p65 (NF-κB p65) in the throat were detected by immunohistochemistry and Western blot to evaluate the anti-inflammatory mechanism of GLY. Hematological assays were also conducted. Results There were four flavonoids identified in GLY: naringin, neohesperidin, baicalin, and wogonoside. The oral administration of GLY showed a significant inhibitory effect on xylene-induced ear swelling and ear blood flow in mice and significantly ameliorated rat right hind paw edema at doses of 6.2 and 12.4 g/kg. Mechanistic studies found that the anti-inflammatory activity of GLY was related to the inhibition of pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α, and PGE2 and that GLY reduced the expression of COX-2 and NF-κB p65 proteins in the throat, attenuated throat injury, and reduced inflammatory exudates. Hematological analysis showed that treatment with GLY prevented increases in white blood cell (WBC), neutrophil (NEUT), lymphocyte (LYMPH) and monocyte (MONO) levels. Conclusions These studies indicated that GLY has beneficial anti-inflammatory effects on CP and that it acts through reducing pro-inflammatory factors such as IL-1β, IL-6, TNF-α, and PGE2, as well as decreasing WBC, NEUT, LYMPH and MONO levels and decreasing the expression of COX-2 and NF-κB p65 proteins. These findings may lay the groundwork for further studies of GLY as a suitable candidate for the treatment of inflammatory diseases such as CP.
Collapse
Affiliation(s)
- Ye-Hui Chen
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Rong Luo
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Shan-Shan Lei
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Bing Li
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Fu-Chen Zhou
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Hui-Ying Wang
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Xue Chen
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Xinglishang He
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Yu-Zhi Wang
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Liang-Hui Zhan
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Ting-Ting Lu
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Jie Su
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Qiao-Xian Yu
- Zhejiang Senyu Co., Ltd, Yiwu, Zhejiang, 322099, People's Republic of China
| | - Bo Li
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China.
| | - Gui-Yuan Lv
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| | - Su-Hong Chen
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China.
| |
Collapse
|
15
|
Li B, He X, Lei SS, Zhou FC, Zhang NY, Chen YH, Wang YZ, Su J, Yu JJ, Li LZ, Zheng X, Luo R, Kołodyńska D, Xiong S, Lv GY, Chen SH. Hypertensive Rats Treated Chronically With N ω-Nitro-L-Arginine Methyl Ester (L-NAME) Induced Disorder of Hepatic Fatty Acid Metabolism and Intestinal Pathophysiology. Front Pharmacol 2020; 10:1677. [PMID: 32076406 PMCID: PMC7006817 DOI: 10.3389/fphar.2019.01677] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/23/2019] [Indexed: 01/14/2023] Open
Abstract
Nω-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) biosynthesis, results in hypertension and liver injury. This study aimed at investigating the changes of liver lipometabonomics and exploring the underlying mechanisms of liver injury in the L-NAME-treated rats. The male Sprague-Dawley (SD) rats were treated with L-NAME (40 mg/kg, p.o.) for 8 weeks. After that, the liver, aorta, fecal, and serum were collected for analysis. The results showed that L-NAME induced hypertension and disordered the endothelial nitric oxide synthase (eNOS)-NO pathway in the treated rats. L-NAME could also increase the levels of serum total cholesterol (TC), triglyceride (TG), alanine transaminase (ALT), and aspartate transaminase (AST). The multidimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) analysis showed that L-NAME could induce significant changes of the total hepatic lipids and most hepatic triglycerides, as well as fatty acid (FA). A positive correlation was found between the blood pressure and TAG. Immunofluorescence and Western-Blot experiments indicated that the L-NAME treatment significantly influenced some FA β-oxidation, desaturation, and synthesis-related proteins. The increase of intestinal inflammation, decrease of microcirculation and tight junction proteins, as well as alterations of microbial communities were observed in the L-NAME induced hypertensive rats, as well as alterations of microbial communities were notable correlation to TAG and FA species. This study demonstrated that the L-NAME-induced hypertensive rats exhibiting liver injury were the joint action of hepatic abnormal fatty acid metabolism and microcirculation disorder. Furthermore, the gut microflora, as well as the changes of FA β-oxidation (ACOX, CPT1α), desaturation (SCD-1), and synthesis (FAS) may be the potential mechanisms for abnormal fatty acid metabolism.
Collapse
Affiliation(s)
- Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Xinglishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Shan-Shan Lei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Fu-Chen Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Ning-Yu Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Ye-Hui Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Zhi Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Jie Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing-Jing Yu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin-Zi Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Xiang Zheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Rong Luo
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Shan Xiong
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
16
|
Dendrobii Officinalis, a traditional Chinese edible and officinal plant, accelerates liver recovery by regulating the gut-liver axis in NAFLD mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103458] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
17
|
Analysis of the Overlapped Electrochemical Signals of Hydrochlorothiazide and Pyridoxine on the Ethylenediamine-Modified Glassy Carbon Electrode by Use of Chemometrics Methods. Molecules 2019; 24:molecules24142536. [PMID: 31373331 PMCID: PMC6680851 DOI: 10.3390/molecules24142536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
In this work, the electrochemical behavior of hydrochlorothiazide and pyridoxine on the ethylenediamine-modified glassy carbon electrode were investigated by differential pulse voltammetry. In pH 3.4 Britton-Robinson (B-R) buffer solution, both hydrochlorothiazide and pyridoxine had a pair of sensitive irreversible oxidation peaks, that overlapped in the 1.10 V to 1.20 V potential range. Under the optimum experimental conditions, the peak current was linearly related to hydrochlorothiazide and pyridoxine in the concentration range of 0.10-2.0 μg/mL and 0.02-0.40 μg/mL, respectively. Chemometrics methods, including classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS), were introduced to resolve the overlapped signals and determine the two components in mixtures, which avoided the troublesome steps of separation and purification. Finally, the simultaneous determination of the two components in commercial pharmaceuticals was performed with satisfactory results.
Collapse
|
18
|
Li HB. Restorative effect of modified dioscorea pills on the structure of hippocampal neurovascular unit in an animal model of chronic cerebral hypoperfusion. Heliyon 2019; 5:e01567. [PMID: 31183430 PMCID: PMC6488689 DOI: 10.1016/j.heliyon.2019.e01567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/12/2019] [Accepted: 04/23/2019] [Indexed: 11/27/2022] Open
Abstract
Introduction A considerable part of old people suffer from Chronic Cerebral Hypoperfusion (CCH) in their long lives but have no way to change. The Modified Dioscorea Pills (MDP), a Chinese compound herbal prescription, has good clinical efficacy for CCH related diseases such as Vascular Dementia, whereas, what happened and how MDP works in CCH need to be clarified. Here, we investigate the neural inflammation and gliosis, neuronal apoptosis and regeneration in an animal model of CCH and interfered with MDP to explore some mechanisms of this Chinese herbal medication. Methods 40 rats were randomly divided into Sham operated Group, Model Group and MDP Group according to a Random Number Table. CCH models were made by the modified 2-VO (two vessels occlusion) operation. The intelligence of rats were measured by Morris Water Maze (MWM) test; H & E staining and transmission electron microscope (TEM) were applied to observe the pathological and ultrastructural changes in hippocampus; The expression of key genes including growth associated protein 43 (GAP-43) and vascular endothelial growth factor (VEGF) and key protein including Bax, Bcl-2, nuclear factor-κB (NF-κB p65), microtubule associated protein-2 (MAP-2), Oligodendrocyte transcription factor 2(Olig-2), glial fibrillary acidic protein (GFAP) of hippocampus were detected. Results CCH lead to learning and memorial impairment and MDP can partly restore them; Neural inflammation, Neuronal apoptosis and astrocyte hyperplasia were common in Model Group but they were partly reversed by MDP; The expressions of GAP-43mRAN and VEGF mRNA in Model Group were much higher than those in Sham operated Group, but they reached the highest in MDP Group (P < 0.01 or P < 0.05). Conclusions Through regulating the expressions of key genes and proteins, MDP partly restore the intrinsic structure of Neurovascular Unit (NVU) in hippocampus, which revealed one of its therapeutic mechanisms on CCH.
Collapse
Affiliation(s)
- H B Li
- Emergency Department of the First People's Hospital of Guiyang, No. 97, Bo-ai Road, Nanming District, Guiyang City, Guizhou Province, People's Republic of China
| |
Collapse
|
19
|
Alcohol Induces More Severe Fatty Liver Disease by Influencing Cholesterol Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7095684. [PMID: 30891077 PMCID: PMC6390266 DOI: 10.1155/2019/7095684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/13/2019] [Indexed: 02/07/2023]
Abstract
Objectives. Fatty liver disease (FLD) is a major cause of morbidity and mortality worldwide. Dietary cholesterol and alcohol consumption are important risk factors for the progression of FLD, but whether and how alcohol induces more severe FLD with cholesterol ingestion remain unclear. Herein, we mainly used the Lieber-DeCarli diet to establish the FLD mouse model to investigate the synergistic effects of alcohol and cholesterol metabolism on liver damage. The indices of aspartate transaminase (AST), alanine transaminase (ALT), low-density lipoprotein cholesterol (LDL-c), and total cholesterol (TC) levels, inflammation foci, and pathogenesis by hematoxylin and eosin (H&E) and Oil Red O staining revealed that alcohol induces more severe liver damage by influencing cholesterol metabolism, which might be primarily related to the influence of cholesterol absorption, synthesis, and excretion on the liver or small intestine. Moreover, inhibition of absorption of intestinal cholesterol, but not of fat, sucrose, and alcohol, absorption into the body's metabolism by Ezetimibe, significantly improved FLD in rats fed with the high fat-cholesterol-sucrose and alcohol diet. These results showed that alcohol plays an important role in cholesterol metabolism in FLD.
Collapse
|