1
|
Varela Alonso A, Naranjo HD, Rat A, Rodić N, Nannou CI, Lambropoulou DA, Assimopoulou AN, Declerck S, Rödel P, Schneider C, Willems A. Root-associated bacteria modulate the specialised metabolome of Lithospermum officinale L. FRONTIERS IN PLANT SCIENCE 2022; 13:908669. [PMID: 36110355 PMCID: PMC9468582 DOI: 10.3389/fpls.2022.908669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Bacteria influence plant growth and development and therefore are attractive resources for applications in agriculture. However, little is known about the impact of these microorganisms on secondary metabolite (SM) production by medicinal plants. Here we assessed, for the first time, the effects of bacteria on the modulation of SM production in the medicinal plant Lithospermum officinale (Boraginaceae family) with a focus on the naphthoquinones alkannin/shikonin and their derivatives (A/Sd). The study was conducted in an in vitro cultivation system developed for that purpose, as well as in a greenhouse. Targeted and non-targeted metabolomics were performed, and expression of the gene PGT encoding for a key enzyme in the A/S biosynthesis pathway was evaluated with qPCR. Three strains, Chitinophaga sp. R-73072, Xanthomonas sp. R-73098 and Pseudomonas sp. R-71838 induced a significant increase of A/Sd in L. officinale in both systems, demonstrating the strength of our approach for screening A/Sd-inducing bacteria. The bacterial treatments altered other plant metabolites derived from the shikimate pathway as well. Our results demonstrate that bacteria influence the biosynthesis of A/Sd and interact with different metabolic pathways. This work highlights the potential of bacteria to increase the production of SM in medicinal plants and reveals new patterns in the metabolome regulation of L. officinale.
Collapse
Affiliation(s)
- Alicia Varela Alonso
- Institut für Pflanzenkultur GmbH & Co. KG., Schnega, Germany
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Henry D. Naranjo
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Angélique Rat
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Nebojša Rodić
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Natural Products Research Center of Excellence (NatPro-AUTh), Center for Interdisciplinary Research and Innovation (CIRI-AUTh), Thessaloniki, Greece
| | - Christina I. Nannou
- Center for Interdisciplinary Research and Innovation (CIRI-AUTh), Balkan Center, Thessaloniki, Greece
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra A. Lambropoulou
- Center for Interdisciplinary Research and Innovation (CIRI-AUTh), Balkan Center, Thessaloniki, Greece
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreana N. Assimopoulou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Natural Products Research Center of Excellence (NatPro-AUTh), Center for Interdisciplinary Research and Innovation (CIRI-AUTh), Thessaloniki, Greece
| | - Stéphane Declerck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Philipp Rödel
- Institut für Pflanzenkultur GmbH & Co. KG., Schnega, Germany
| | | | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Huang Y, An W, Yang Z, Xie C, Liu S, Zhan T, Pan H, Zheng X. Metabolic stimulation-elicited transcriptional responses and biosynthesis of acylated triterpenoids precursors in the medicinal plant Helicteres angustifolia. BMC PLANT BIOLOGY 2022; 22:86. [PMID: 35216551 PMCID: PMC8876399 DOI: 10.1186/s12870-022-03429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Helicteres angustifolia has long been used in Chinese traditional medicine. It has multiple pharmacological benefits, including anti-inflammatory, anti-viral and anti-tumor effects. Its main active chemicals include betulinic acid, oleanolic acid, helicteric acid, helicterilic acid, and other triterpenoid saponins. It is worth noting that some acylated triterpenoids, such as helicteric acid and helicterilic acid, are characteristic components of Helicteres and are relatively rare among other plants. However, reliance on natural plants as the only sources of these is not enough to meet the market requirement. Therefore, the engineering of its metabolic pathway is of high research value for enhancing the production of secondary metabolites. Unfortunately, there are few studies on the biosynthetic pathways of triterpenoids in H. angustifolia, hindering its further investigation. RESULTS Here, the RNAs of different groups treated by metabolic stimulation were sequenced with an Illumina high-throughput sequencing platform, resulting in 121 gigabases of data. A total of 424,824 unigenes were obtained after the trimming and assembly of the raw data, and 22,430 unigenes were determined to be differentially expressed. In addition, three oxidosqualene cyclases (OSCs) and four Cytochrome P450 (CYP450s) were screened, of which one OSC (HaOSC1) and one CYP450 (HaCYPi3) achieved functional verification, suggesting that they could catalyze the production of lupeol and oleanolic acid, respectively. CONCLUSION In general, the transcriptomic data of H. angustifolia was first reported and analyzed to study functional genes. Three OSCs, four CYP450s and three acyltransferases were screened out as candidate genes to perform further functional verification, which demonstrated that HaOSC1 and HaCYPi3 encode for lupeol synthase and β-amyrin oxidase, which produce corresponding products of lupeol and oleanolic acid, respectively. Their successful identification revealed pivotal steps in the biosynthesis of acylated triterpenoids precursors, which laid a foundation for further study on acylated triterpenoids. Overall, these results shed light on the regulation of acylated triterpenoids biosynthesis.
Collapse
Affiliation(s)
- Yuying Huang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Wenli An
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Zerui Yang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Chunzhu Xie
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Shanshan Liu
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Ting Zhan
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Huaigeng Pan
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Xiasheng Zheng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| |
Collapse
|
3
|
Vergara-Martínez VM, Estrada-Soto SE, Valencia-Díaz S, Garcia-Sosa K, Peña-Rodríguez LM, Arellano-García JDJ, Perea-Arango I. Methyl jasmonate enhances ursolic, oleanolic and rosmarinic acid production and sucrose induced biomass accumulation, in hairy roots of Lepechinia caulescens. PeerJ 2021; 9:e11279. [PMID: 33986996 PMCID: PMC8086586 DOI: 10.7717/peerj.11279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Background Ursolic (UA), oleanolic (OA) and rosmarinic (RA) acids are bioactive metabolites found in Lepechinia caulescens that have generated interest for their health benefits, which include antimicrobial, antioxidant, antimutagenic, gastroprotective, antidiabetic, antihypertensive and anti-inflammatory properties, among others. To date, very few attempts have been made to evaluate the potential for simultaneous production of these bioactive compounds, using a biotechnological approach. Hairy root cultures offer a biotechnology approach that can be used to study the factors affecting the biosynthesis and the production of UA, OA and RA. In the current study, we established hairy root cultures of L. caulescens and evaluated the effect of sucrose on biomass accumulation, and the effect of different concentrations and times of exposure of methyl jasmonate (MeJA), on the accumulation of UA, OA and RA. Methods Leaves from plants of L. caulescens were inoculated with Agrobacterium rhizogenes strain ATCC 15834. PCR of rolB gene confirmed the transgenic nature of hairy roots. Hairy roots were subcultured in semisolid MSB5 medium, supplemented with 15, 30, 45 or 60 g/L sucrose and after 4 weeks, dry weight was determined. The accumulation of UA, OA and RA of wild plants and hairy roots were determined by HPLC. Finally, the hairy roots were treated with 0, 100, 200 and 300 µM of MeJA and the content of bioactive compounds was analyzed, after 24, 48 and 72 h. Results High frequency transformation (75%) was achieved, using leaf explants from axenic seedlings, infected with A. rhizogenes. The hairy roots showed an enhanced linear biomass accumulation, in response to the increase in sucrose concentration. The hairy root cultures in MSB5 medium, supplemented with 45 g/L sucrose, were capable to synthesizing UA (0.29 ± 0.00 mg/g DW), OA (0.57 ± 0.00 mg/g DW) and RA (41.66 ± 0.31 mg/g DW), about two, seven and three times more, respectively, than in roots from wild plants. Elicitation time and concentration of MeJA resulted in significant enhancement in the production of UA, OA and RA, with treatments elicited for 24 h, with a concentration of 300 µM of MeJA, exhibiting greatest accumulation. Conclusion This is the first report on development of hairy root cultures of L. caulescens. Future studies should aim towards further improving triterpenes and polyphenolic compound production in hairy roots of L. caulescens, for use in the pharmaceutical and biotechnological industry.
Collapse
Affiliation(s)
- Victor M Vergara-Martínez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Samuel E Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Susana Valencia-Díaz
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Karlina Garcia-Sosa
- Laboratorio de Química Orgánica, Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
| | - Luis Manuel Peña-Rodríguez
- Laboratorio de Química Orgánica, Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
| | | | - Irene Perea-Arango
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
4
|
Strzemski M, Dresler S, Sowa I, Czubacka A, Agacka-Mołdoch M, Płachno BJ, Granica S, Feldo M, Wójciak-Kosior M. The Impact of Different Cultivation Systems on the Content of Selected Secondary Metabolites and Antioxidant Activity of Carlina acaulis Plant Material. Molecules 2019; 25:molecules25010146. [PMID: 31905857 DOI: 10.3390/molecules25010146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 01/13/2023] Open
Abstract
Roots and leaves of Carlina acaulis L. are still used in ethnomedicine in many European countries; however, the limited occurrence of the plants and protection of this species necessitate a search for alternative ways for obtaining this plant material. In this study, in vitro cultures, hydroponic cultures, and field cultivation were applied to obtain the C. acaulis plant material. Its quality was evaluated using antioxidant activity tests and high performance liquid chromatography analysis. Our study showed that the antioxidant activity and the content of chlorogenic and 3,5-di-caffeoylquinic acid in roots of plants cultivated in hydroponics and field conditions were comparable. However, the amount of carlina oxide was significantly higher in plants from the field. The flavonoid content in leaves obtained from both cultivation systems was at the same level; however, the antioxidant activity and the content of the investigated metabolites were higher in the soil cultivation system. The callus line exhibited high differentiation in phytochemical compositions depending on the treatments and medium compositions.
Collapse
Affiliation(s)
- Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Sławomir Dresler
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Anna Czubacka
- Department of Plant Breeding and Biotechnology, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8 St., 24-100 Puławy, Poland
| | - Monika Agacka-Mołdoch
- Department of Plant Breeding and Biotechnology, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8 St., 24-100 Puławy, Poland
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 9 St. 30-387 Cracow, Poland
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 St., 02-097 Warsaw, Poland
| | - Marcin Feldo
- Department of Vascular Surgery, Medical University of Lublin, Staszica 11 St., 20-081 Lublin, Poland
| | - Magdalena Wójciak-Kosior
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|