1
|
Im SA, Gennari A, Park YH, Kim JH, Jiang ZF, Gupta S, Fadjari TH, Tamura K, Mastura MY, Abesamis-Tiambeng MLT, Lim EH, Lin CH, Sookprasert A, Parinyanitikul N, Tseng LM, Lee SC, Caguioa P, Singh M, Naito Y, Hukom RA, Smruti BK, Wang SS, Kim SB, Lee KH, Ahn HK, Peters S, Kim TW, Yoshino T, Pentheroudakis G, Curigliano G, Harbeck N. Pan-Asian adapted ESMO Clinical Practice Guidelines for the diagnosis, staging and treatment of patients with metastatic breast cancer. ESMO Open 2023; 8:101541. [PMID: 37178669 PMCID: PMC10186487 DOI: 10.1016/j.esmoop.2023.101541] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 05/15/2023] Open
Abstract
The most recent version of the European Society for Medical Oncology (ESMO) Clinical Practice Guidelines for the diagnosis, staging and treatment of patients with metastatic breast cancer (MBC) was published in 2021. A special, hybrid guidelines meeting was convened by ESMO and the Korean Society of Medical Oncology (KSMO) in collaboration with nine other Asian national oncology societies in May 2022 in order to adapt the ESMO 2021 guidelines to take into account the differences associated with the treatment of MBC in Asia. These guidelines represent the consensus opinions reached by a panel of Asian experts in the treatment of patients with MBC representing the oncological societies of China (CSCO), India (ISMPO), Indonesia (ISHMO), Japan (JSMO), Korea (KSMO), Malaysia (MOS), the Philippines (PSMO), Singapore (SSO), Taiwan (TOS) and Thailand (TSCO). The voting was based on the best available scientific evidence and was independent of drug access or practice restrictions in the different Asian countries. The latter were discussed when appropriate. The aim of these guidelines is to provide guidance for the harmonisation of the management of patients with MBC across the different regions of Asia, drawing from data provided by global and Asian trials whilst at the same time integrating the differences in genetics, demographics and scientific evidence, together with restricted access to certain therapeutic strategies.
Collapse
Affiliation(s)
- S-A Im
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea.
| | - A Gennari
- Department of Translational Medicine, University Piemonte Orientale, Novara, Italy
| | - Y H Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - J H Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Z-F Jiang
- Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - S Gupta
- Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - T H Fadjari
- Department of Internal Medicine, Hasan Sadikin General Hospital, Bandung, Indonesia
| | - K Tamura
- Department of Medical Oncology, Shimane University Hospital, Shimane, Japan
| | - M Y Mastura
- Cancer Centre, Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - M L T Abesamis-Tiambeng
- Section of Medical Oncology, Department of Internal Medicine, Cardinal Santos Cancer Center, San Juan, The Philippines
| | - E H Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - C-H Lin
- Department of Medical Oncology, National Taiwan University Hospital, Cancer Center Branch, Taipei, Taiwan
| | - A Sookprasert
- Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - N Parinyanitikul
- Medical Oncology Unit, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital and Chulalongkorn University, Bangkok, Thailand
| | - L-M Tseng
- Taipei-Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - S-C Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), Singapore, Singapore
| | - P Caguioa
- The Cancer Institute of St Luke's Medical Center, National Capital Region, The Philippines; The Cancer Institute of the University of Santo Tomas Hospital, National Capital Region, The Philippines
| | - M Singh
- Department of Radiotherapy, Pantai Cancer Institute, Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia; Department of Oncology, Pantai Cancer Institute, Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Y Naito
- Department of General Internal Medicine, National Cancer Center Hospital East, Kashiwa, Japan
| | - R A Hukom
- Department of Hematology and Medical Oncology, Dharmais Hospital (National Cancer Center), Jakarta, Indonesia
| | - B K Smruti
- Medical Oncology, Lilavati Hospital and Research Centre and Bombay Hospital Institute of Medical Sciences, Mumbai, India
| | - S-S Wang
- Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - S B Kim
- Department of Oncology, Asan Medical Centre, Seoul, Republic of Korea
| | - K-H Lee
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - H K Ahn
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - S Peters
- Oncology Department, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - T W Kim
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - T Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | | | - G Curigliano
- Istituto Europeo di Oncologia, IRCCS, Milan, Italy; Department of Oncology and Haematology, University of Milano, Milan, Italy
| | - N Harbeck
- Breast Center, Department of Obstetrics and Gynaecology and Comprehensive Cancer Center Munich, LMU University Hospital, Munich, Germany
| |
Collapse
|
2
|
Plaza-Diaz J, Álvarez-Mercado AI. The Interplay between Microbiota and Chemotherapy-Derived Metabolites in Breast Cancer. Metabolites 2023; 13:703. [PMID: 37367861 PMCID: PMC10301694 DOI: 10.3390/metabo13060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The most common cancer in women is breast cancer, which is also the second leading cause of death in this group. It is, however, important to note that some women will develop or will not develop breast cancer regardless of whether certain known risk factors are present. On the other hand, certain compounds are produced by bacteria in the gut, such as short-chain fatty acids, secondary bile acids, and other metabolites that may be linked to breast cancer development and mediate the chemotherapy response. Modeling the microbiota through dietary intervention and identifying metabolites directly associated with breast cancer and its complications may be useful to identify actionable targets and improve the effect of antiangiogenic therapies. Metabolomics is therefore a complementary approach to metagenomics for this purpose. As a result of the combination of both techniques, a better understanding of molecular biology and oncogenesis can be obtained. This article reviews recent literature about the influence of bacterial metabolites and chemotherapy metabolites in breast cancer patients, as well as the influence of diet.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
| |
Collapse
|
3
|
Zhou H, Chen H, Cheng C, Wu X, Ma Y, Han J, Li D, Lim GH, Rozen WM, Ishii N, Roy PG, Wang Q. A quality evaluation of the clinical practice guidelines on breast cancer using the RIGHT checklist. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1174. [PMID: 34430615 PMCID: PMC8350626 DOI: 10.21037/atm-21-2884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/02/2021] [Indexed: 11/06/2022]
Abstract
Background Breast cancer is the most frequent type of cancer in women. The methodological quality of clinical practice guidelines (CPGs) on breast cancer has been shown to be heterogeneous. The aim of our study was to evaluate the quality of breast cancer CPGs published in years 2018-2020, using the Reporting Items for Practice Guidelines in Healthcare (RIGHT) checklist. Methods We searched Medline (via PubMed), Chinese National Knowledge Infrastructure (CNKI), Wanfang and Chinese Biomedical Literature (CBM) as well as websites of guideline organizations for CPGs on breast cancer published between 2018 and 2020. We used the RIGHT checklist to evaluate the reporting quality of the included guidelines by assessing whether the CPGs adhered to each item of the checklist and calculated the proportions of appropriately reported RIGHT checklist items. We also presented the adherence reporting rates for each guideline and the mean rates for each of the seven domains of the RIGHT checklist. Results A total of 45 guidelines were included. Eighteen (40.0%) guidelines had an overall reporting rate below 50% and only three (6.7%) reported more than 80% of the items. The domains “Basic information” and “Background” had the highest reporting rates (75.9% and 62.5%, respectively). The mean reporting rates of the domains “Evidence”, “Recommendation”, “Review and quality assurance”, “Funding and declaration and management of interests” and “Other information” were 42.7%, 53.0%, 33.3%, 45.0%, and 44.4%, respectively. Conclusions The reporting quality varied among guidelines for breast cancer, showing the need for improvement in reporting the contents. Guideline developers should pay more attention to reporting the evidence, review and quality assurance, and funding and declaration and management of interests in future.
Collapse
Affiliation(s)
- Hanqiong Zhou
- Department of Internal Medicine, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Haiyang Chen
- Department of Internal Medicine, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Cheng Cheng
- Department of Hematology, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xuan Wu
- Department of Internal Medicine, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yanfang Ma
- School of Chinese Medicine of Hong Kong Baptist University, Hong Kong, China
| | - Jing Han
- Department of Internal Medicine, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Ding Li
- Department of Pharmacy, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Geok Hoon Lim
- Breast Department, KK Women's and Children's Hospital, Singapore, Singapore
| | - Warren M Rozen
- Peninsula Clinical School, Central Clinical School, Monash University, Frankston, Victoria, Australia
| | - Naohiro Ishii
- Department of Plastic and Reconstructive Surgery, International University of Health and Welfare Hospital, Nasushiobara, Japan
| | - Pankaj G Roy
- Department of Breast Surgery, Oxford University Hospitals NHSFT, Oxford, UK
| | - Qiming Wang
- Department of Internal Medicine, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Lainetti PDF, Leis-Filho AF, Laufer-Amorim R, Battazza A, Fonseca-Alves CE. Mechanisms of Resistance to Chemotherapy in Breast Cancer and Possible Targets in Drug Delivery Systems. Pharmaceutics 2020; 12:1193. [PMID: 33316872 PMCID: PMC7763855 DOI: 10.3390/pharmaceutics12121193] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is one of the most important cancers worldwide, and usually, chemotherapy can be used in an integrative approach. Usually, chemotherapy treatment is performed in association with surgery, radiation or hormone therapy, providing an increased outcome to patients. However, tumors can develop resistance to different drugs, progressing for a more aggressive phenotype. In this scenario, the use of nanocarriers could help to defeat tumor cell resistance, providing a new therapeutic perspective for patients. Thus, this systematic review aims to bring the molecular mechanisms involved in BC chemoresistance and extract from the previous literature information regarding the use of nanoparticles as potential treatment for chemoresistant breast cancer.
Collapse
Affiliation(s)
- Patrícia de Faria Lainetti
- Department of Veterinary Surgery and Animal Reproduction, Sao Paulo State University–UNESP, Botucatu-SP 18618-681, Brazil; (P.d.F.L.); (A.F.L.-F.)
| | - Antonio Fernando Leis-Filho
- Department of Veterinary Surgery and Animal Reproduction, Sao Paulo State University–UNESP, Botucatu-SP 18618-681, Brazil; (P.d.F.L.); (A.F.L.-F.)
| | - Renee Laufer-Amorim
- Department of Veterinary Clinic, Sao Paulo State University–UNESP, Botucatu-SP 18618-681, Brazil;
| | - Alexandre Battazza
- Department of Pathology, Botucatu Medical School, São Paulo State University–UNESP, Botucatu-SP 18618-681, Brazil;
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, Sao Paulo State University–UNESP, Botucatu-SP 18618-681, Brazil; (P.d.F.L.); (A.F.L.-F.)
- Institute of Health Sciences, Paulista University–UNIP, Bauru-SP 17048-290, Brazil
| |
Collapse
|
5
|
Smalley M, Natarajan SK, Mondal J, Best D, Goldman D, Shanthappa B, Pellowe M, Dash C, Saha T, Khiste S, Ramadurai N, Eton EO, Smalley JL, Brown A, Thayakumar A, Rahman M, Arai K, Kohandel M, Sengupta S, Goldman A. Nanoengineered Disruption of Heat Shock Protein 90 Targets Drug-Induced Resistance and Relieves Natural Killer Cell Suppression in Breast Cancer. Cancer Res 2020; 80:5355-5366. [PMID: 33077554 DOI: 10.1158/0008-5472.can-19-4036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 08/16/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022]
Abstract
Drug-induced resistance, or tolerance, is an emerging yet poorly understood failure of anticancer therapy. The interplay between drug-tolerant cancer cells and innate immunity within the tumor, the consequence on tumor growth, and therapeutic strategies to address these challenges remain undescribed. Here, we elucidate the role of taxane-induced resistance on natural killer (NK) cell tumor immunity in triple-negative breast cancer (TNBC) and the design of spatiotemporally controlled nanomedicines, which boost therapeutic efficacy and invigorate "disabled" NK cells. Drug tolerance limited NK cell immune surveillance via drug-induced depletion of the NK-activating ligand receptor axis, NK group 2 member D, and MHC class I polypeptide-related sequence A, B. Systems biology supported by empirical evidence revealed the heat shock protein 90 (Hsp90) simultaneously controls immune surveillance and persistence of drug-treated tumor cells. On the basis of this evidence, we engineered a "chimeric" nanotherapeutic tool comprising taxanes and a cholesterol-tethered Hsp90 inhibitor, radicicol, which targets the tumor, reduces tolerance, and optimally reprimes NK cells via prolonged induction of NK-activating ligand receptors via temporal control of drug release in vitro and in vivo. A human ex vivo TNBC model confirmed the importance of NK cells in drug-induced death under pressure of clinically approved agents. These findings highlight a convergence between drug-induced resistance, the tumor immune contexture, and engineered approaches that consider the tumor and microenvironment to improve the success of combinatorial therapy. SIGNIFICANCE: This study uncovers a molecular mechanism linking drug-induced resistance and tumor immunity and provides novel engineered solutions that target these mechanisms in the tumor and improve immunity, thus mitigating off-target effects.
Collapse
Affiliation(s)
- Munisha Smalley
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Siva Kumar Natarajan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jayanta Mondal
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Douglas Best
- Integrative Immuno-Oncology Center, Farcast Biosciences, Woburn, Massachusetts
| | | | | | - Moriah Pellowe
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Chinmayee Dash
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Tanmoy Saha
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sachin Khiste
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Nithya Ramadurai
- Integrative Immuno-Oncology Center, Farcast Biosciences, Woburn, Massachusetts
| | - Elliot O Eton
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | | | - Andrew Brown
- Division of Computational Genomics, Arrayo, Boston, Massachusetts
| | - Allen Thayakumar
- Integrative Immuno-Oncology Center, Farcast Biosciences, Woburn, Massachusetts
| | - Mamunur Rahman
- Medical and Biological Laboratories International, Woburn, Massachusetts
| | | | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Shiladitya Sengupta
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
| | - Aaron Goldman
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|