1
|
Abu Mhanna HY, Omar AF, Radzi YM, Oglat AA, Akhdar HF, Al Ewaidat H, Almahmoud A, Bani Yaseen AB, Al Badarneh L, Alhamad O, Alhamad L. Systematic review of functional magnetic resonance imaging (fMRI) applications in the preoperative planning and treatment assessment of brain tumors. Heliyon 2025; 11:e42464. [PMID: 40007791 PMCID: PMC11850128 DOI: 10.1016/j.heliyon.2025.e42464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The utilization of functional magnetic resonance imaging (fMRI) is critical in the preoperative planning phase of brain tumor surgery because it allows for a delicate balance between maximizing tumor resection and maintaining brain function. A decade of fMRI development was examined in this study, with a particular emphasis on its use in diagnosing and assessing the efficacy of brain cancer treatments. We examined the foundational principles, practical implementations, and verification of fMRI via direct brain stimulation, with particular emphasis on its capacity to detect cerebral regions affected by tumors that are eloquent in nature. Recently, fMRI has undergone significant progress, allowing for its integration into clinical workflows to facilitate precise mapping of brain functions. This extensive analysis encompasses the scrutiny of resting-state fMRI (Rs-fMRI) as a method of capturing functional connectivity, thereby providing significant insights into the management of patients with brain tumors. Methodological advancements, clinical applicability, and future orientations of fMRI are highlighted in this review, which emphasizes the substantial influence of the technique on neurosurgical planning and patient outcomes.
Collapse
Affiliation(s)
| | - Ahmad Fairuz Omar
- School of Physics, Universiti Sains Malaysia, USM, 11800, Penang, Malaysia
| | - Yasmin Md Radzi
- School of Physics, Universiti Sains Malaysia, USM, 11800, Penang, Malaysia
| | - Ammar A. Oglat
- Department of Medical Imaging, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Hanan Fawaz Akhdar
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Haytham Al Ewaidat
- Department of Allied Medical Sciences-Radiologic Technology, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Abdallah Almahmoud
- Department of Allied Medical Sciences-Radiologic Technology, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Abdel-Baset Bani Yaseen
- Department of Medical Imaging, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Laith Al Badarneh
- School of Physics, Universiti Sains Malaysia, USM, 11800, Penang, Malaysia
| | - Omar Alhamad
- Imagining Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, 112412, United Arab Emirates
| | - Laith Alhamad
- Imagining Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, 112412, United Arab Emirates
| |
Collapse
|
2
|
Cargnelutti E, Maieron M, D'Agostini S, Ius T, Skrap M, Tomasino B. Exploring cognitive Landscapes: Longitudinal Dynamics of left insula gliomas using neuropsychological inquiry, fMRI, and intra-resection real time neuropsychological testing. Neuroimage Clin 2024; 44:103689. [PMID: 39467497 PMCID: PMC11549996 DOI: 10.1016/j.nicl.2024.103689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
We explored the functional outcome following awake surgery and Real-Time Neuropsychological Testing (RTNT) in the left insula. We carried out a longitudinal investigation by comparing the patients' language profile, and, in particular, the object-naming skills and the associated fMRI network, of pre-surgery and follow-up (i.e., a few months after surgery) in a group of 23 patients harboring a left-sided low grade glioma centered to the insulo-temporal area. Tumor resection, performed while continuously monitoring patients' performance by RNTN, was high (median = 92 %). From the neuropsychological viewpoint, almost all patients displayed preserved naming and language skills in general, both before surgery and at follow-up, when they recovered from a transient impairment recorded immediately after surgery. From the functional imaging viewpoint, the naming networks of the two assessment times were almost equivalent, with non-parametric analyses showing brain remodeling involving perilesional areas preoperatively and the contralesional, healthy, insula at follow-up. We discussed the anatomo-functional mechanisms that contributed to the preservation of the functional and cognitive pattern as observed in this longitudinal study, with a particular focus on the promising plasticity potential of the left insular area. In particular, we commented that, at least in our patient series and by applying an optimized surgical procedure, surgery in the insula was safe and generally contributed to the preservation of the language functions.
Collapse
Affiliation(s)
- Elisa Cargnelutti
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Italy
| | - Marta Maieron
- Department of Physics, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy.
| | - Serena D'Agostini
- Neuroradiology Unit, Department of Diagnostic Imaging, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy.
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy.
| | - Miran Skrap
- Neurosurgery Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy.
| | - Barbara Tomasino
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Italy.
| |
Collapse
|
3
|
Oancea AA, Saleh C, Cordier D, Schoepfer R, Lieb J. Does Functional Imaging Play a Role in Pre-Operative Diagnosis of Brain Tumours? FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:366-368. [PMID: 37327815 DOI: 10.1055/a-2089-3425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although there is a large variability in the neural organization of language function between individuals, there is an ongoing debate about functional imaging as a standard procedure in the preoperative setting of brain tumors. Brain mapping of the language centers differs from individual to individual in multilingual patients and changes in its architecture may occur as a result of neuroplasticity induced by a mass lesion. This article discusses the role of functional imaging in the preoperative setting.
Collapse
Affiliation(s)
- Alexandra A Oancea
- REHAB Basel, Clinic for Neurorehabilitation and Paraplegiology, Basel, Switzerland
| | - Christian Saleh
- REHAB Basel, Clinic for Neurorehabilitation and Paraplegiology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Dominik Cordier
- Department of Neurosurgery, University Hospital of Basel, Basel, Switzerland
| | - Raphaela Schoepfer
- REHAB Basel, Clinic for Neurorehabilitation and Paraplegiology, Basel, Switzerland
| | - Johanna Lieb
- University of Basel, Basel, Switzerland
- Division of Neuroradiology, Clinic of Radiology & Nuclear Medicine, Department of Theragnostics, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Nieberlein L, Rampp S, Gussew A, Prell J, Hartwigsen G. Reorganization and Plasticity of the Language Network in Patients with Cerebral Gliomas. Neuroimage Clin 2023; 37:103326. [PMID: 36736198 PMCID: PMC9926312 DOI: 10.1016/j.nicl.2023.103326] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/15/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Language is organized in large-scale networks in the human brain that show a strong potential for flexible interactions and adaptation. Neuroplasticity is the central mechanism that allows such dynamic modulation to changing conditions across the life span and is particularly important for network reorganization after brain lesions. Most studies on language reorganization focused on language recovery after stroke. Yet, a strong degree of adaptive neuroplasticity can also be observed in patients with brain tumors in language-eloquent brain areas. This review discusses key mechanisms for neural reorganization in patients with brain tumors. Our main aim is to elucidate the underlying mechanisms for intra- and interhemispheric plasticity in the language network in these patients. The following reorganization patterns are discussed: 1) Persisting function within the tumor; 2) Reorganization in perilesional regions; 3) Reorganization in a distributed network of the affected hemisphere; 4) Reorganization to the contralesional hemisphere. In this context, we shed light on language-related reorganization patterns in frontal and temporo-parietal areas and discuss their functional relevance. We also address tumor-related changes in structural and functional connectivity between eloquent brain regions. Thereby, we aim to expand the general understanding of the plastic potential of the neural language network and facilitate clinical decision-making processes for effective, function-preserving tumor treatment.
Collapse
Affiliation(s)
- Laura Nieberlein
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Halle (Saale), Germany; Department of Neurosurgery, University Hospital Erlangen, Germany
| | - Alexander Gussew
- Department of Medical Physics, University Hospital Halle (Saale), Germany
| | - Julian Prell
- Department of Neurosurgery, University Hospital Halle (Saale), Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Wilhelm Wundt Institute for Psychology, Leipzig University, Germany
| |
Collapse
|
5
|
Contralesional Cortical and Network Features Associated with Preoperative Language Deficit in Glioma Patients. Cancers (Basel) 2022; 14:cancers14184469. [PMID: 36139629 PMCID: PMC9496725 DOI: 10.3390/cancers14184469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Gliomas that infiltrate eloquent areas can damage the corresponding cortical or subcortical structures, leading to language dysfunction. A total of 20–40% of eloquent area glioma patients have language deficits. Gliomas anchored in eloquent areas cause varying degrees of language impairment. A tumor’s size, grade, location, and contralesional compensation may explain these differences. This study aimed to retrospectively explore gray and white matter plasticity in the contralesional hemisphere of patients with gliomas in the eloquent area using VBM and DTI network analysis. Abstract Lower-grade Gliomas anchored in eloquent areas cause varying degrees of language impairment. Except for a tumor’s features, contralesional compensation may explain these differences. Therefore, studying changes in the contralateral hemisphere can provide insights into the underlying mechanisms of language function compensation in patients with gliomas. This study included 60 patients with eloquent-area or near-eloquent-area gliomas. The participants were grouped according to the degree of language defect. T1 and diffusion tensor imaging were obtained. The contralesional cortical volume and the subcortical network were compared between groups. Patients with unimpaired language function showed elevated cortical volume in the midline areas of the frontal and temporal lobes. In subcortical networks, the group also had the highest global efficiency and shortest global path length. Ten nodes had intergroup differences in nodal efficiency, among which four nodes were in the motor area and four nodes were in the language area. Linear correlation was observed between the efficiency of the two nodes and the patient’s language function score. Functional compensation in the contralesional hemisphere may alleviate language deficits in patients with gliomas. Structural compensation mainly occurs in the contralesional midline area in the frontal and temporal lobes, and manifests as an increase in cortical volume and subcortical network efficiency.
Collapse
|
6
|
Fang S, Wang Y, Jiang T. Epilepsy enhance global efficiency of language networks in right temporal lobe gliomas. CNS Neurosci Ther 2021; 27:363-371. [PMID: 33464718 PMCID: PMC7871790 DOI: 10.1111/cns.13595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS We analyzed the resting state functional magnetic resonance images to investigate the alterations of neural networks in patients with glioma-related epilepsy (GRE). METHODS Fifty-six patients with right temporal lower-grade glioma were divided into GRE (n = 28) and non-GRE groups. Twenty-eight healthy subjects were recruited after matching age, sex, and education level. Sensorimotor, visual, language, and left executive control networks were applied to generate functional connectivity matrices, and their topological properties were investigated. RESULTS No significant alterations in functional connectivity were found. The least significant discovery test revealed differences only in the language network. The shortest path length, clustering coefficient, local efficiency, and vulnerability were greater in the non-GRE group than in the other groups. The nodal efficiencies of two nodes (mirror areas to Broca and Wernicke) were weaker in the non-GRE group than in the other groups. The node of degree centrality (Broca), nodal local efficiency (Wernicke), and nodal clustering coefficient (temporal polar) were greater in the non-GRE group than in the healthy group. CONCLUSION Different tumor locations alter different neural networks. Temporal lobe gliomas in the right hemisphere altered the language network. Glioma itself and GRE altered the network in opposing ways in patients with right temporal glioma.
Collapse
Affiliation(s)
- Shengyu Fang
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yinyan Wang
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
7
|
Fang S, Zhou C, Wang Y, Jiang T. Contralesional functional network reorganization of the insular cortex in diffuse low-grade glioma patients. Sci Rep 2021; 11:623. [PMID: 33436741 PMCID: PMC7804949 DOI: 10.1038/s41598-020-79845-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Diffuse low-grade gliomas (DLGGs) growing on the insular lobe induce contralesional hemispheric insular lobe compensation of damaged functioning by increasing cortical volumes. However, it remains unclear how functional networks are altered in patients with insular lobe DLGGs during functional compensation. Thirty-five patients with insular DLGGs were classified into the left (insL, n = 16) and right groups (insR, n = 19), and 33 healthy subjects were included in the control group. Resting state functional magnetic resonance imaging was used to generate functional connectivity (FC), and network topological properties were evaluated using graph theoretical analysis based on FC matrices. Network-based statistics were applied to compare differences in the FC matrices. A false discovery rate was applied to correct the topological properties. There was no difference in the FC of edges between the control and insL groups; however, the nodal shortest path length of the right insular lobe was significantly increased in the insL group compared to the control group. Additionally, FC was increased in the functional edges originating from the left insular lobe in the insR group compared to the control group. Moreover, there were no differences in topological properties between the insR and control groups. The contralesional insular lobe is crucial for network alterations. The detailed patterns of network alterations were different depending on the affected hemisphere. The observed network alterations might be associated with functional network reorganization and functional compensation.
Collapse
Affiliation(s)
- Shengyu Fang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119, the Western Road of the southern 4th Ring Road, Beijing, 100070, China
| | - Chunyao Zhou
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119, the Western Road of the southern 4th Ring Road, Beijing, 100070, China
| | - Yinyan Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China. .,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119, the Western Road of the southern 4th Ring Road, Beijing, 100070, China.
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China. .,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119, the Western Road of the southern 4th Ring Road, Beijing, 100070, China. .,Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors Chinese (2019RU11), Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Relationships of Language Lateralization with Diffusion Tensor Imaging Metrics of Corpus Callosum, Tumor Grade, and Tumors Distance to Language-Eloquent Areas in Glial Neoplasms. J Comput Assist Tomogr 2020; 44:956-968. [PMID: 33196603 DOI: 10.1097/rct.0000000000001103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of the study was to search relationships between language lateralization and corpus callosum (CC) connectivity, tumor grade, and tumors distance to language-eloquent areas in glial neoplasms. MATERIALS AND METHODS The functional magnetic resonance imaging and CC diffusion tensor imaging (DTI) metrics of 42 patients with glial neoplasm were evaluated for relationships of language lateralization (left, right, and bilateral) with CC DTI metrics (tracts number, voxel, volume, length, fractional anisotropy [FA], and apparent diffusion coefficient), tumor grade, and tumors distance to language-eloquent areas and relationships of CC DTI metrics with tumor grade. Kruskal-Wallis, Mann-Whitney U, and χ tests were used. All were repeated in 26 patients with left hemispheric masses. RESULTS In glial masses, language bilateralism was more common than normal population and more pronounced in low grade than high grade. In right lateralism and bilateralism, tumor settlement nearby language-eloquent areas was more common. In the left lateralism, highest CC tract number, higher tumor grade, and more remote tumor settlements were noted. There was no relationship between CC DTI metrics and tumor grade but increase in CC tracts number and FA with increasing tumor grade. CONCLUSIONS Increased bilateralism in glial masses than normal population and in low grade tumors than high grade and increased nearby tumor settlement in right lateralism and bilateralism support interhemispheric reorganization and plasticity. This is more pronounced in low grade because of higher life span. Highest CC tract number, higher tumor grade, and more remote tumor settlement in left lateralized group suggest intact CC integrity with limited hemispheric destruction. Increasing CC tracts number and FA with increasing tumor grade support preserved CC integrity in the shorter life span of high-grade tumors.
Collapse
|
9
|
Utilization of functional MRI language paradigms for pre-operative mapping: a systematic review. Neuroradiology 2019; 62:353-367. [DOI: 10.1007/s00234-019-02322-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
|