1
|
Sang CY, Liu JR, Zheng YD, Chai T, Shi JT, Naghavi MR, Alibekovna KE, Solievich BA, Yang JL. Obacunone potentiated PD-1 immunotherapy in pancreatic cancer by mediating CD36. Eur J Pharmacol 2025; 994:177367. [PMID: 39986594 DOI: 10.1016/j.ejphar.2025.177367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
Chemotherapy for patients with pancreatic cancer typically has a poor prognosis. Immunotherapy is currently a hot therapeutical approach to treat tumors. Various studies have shown that natural products have numerous activities, especially in the anti-tumor field. The triterpenoid class compound Obacunone has been shown to have various bioactivities, including anti-cancer properties. In this study, combining Obacunone with anti-PD-1 to treat pancreatic cancer in mice enhanced the anti-cancer activity of anti-PD-1 and suppressed tumor growth significantly. Proteomic analysis, immunofluorescence, Western blot, and flow cytometry revealed that this combination of compounds modulated the CD36-mediated PPAR signaling pathway to improve the infiltration and number of immune-associated CD4+ and CD8+ T cells in tumors. This report provides a new strategy for discovering immunotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Chun-Yan Sang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China
| | - Jia-Rong Liu
- Department of Medicine, Northwest Minzu University, Lanzhou, 730030, China
| | - Yi-Dan Zheng
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China
| | - Tian Chai
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China
| | - Jiao-Tai Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China
| | | | - Komila Eshbakova Alibekovna
- S.Yu.Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences, Tashkent, 100170, Uzbekistan
| | | | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China.
| |
Collapse
|
2
|
Hop NQ, Son NT. The quassinoids bruceines A-M: pharmacology, mechanism of action, synthetic advance, and pharmacokinetics-a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9417-9433. [PMID: 38985315 DOI: 10.1007/s00210-024-03281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Bruceines A-L are among the quassinoid representatives found in the medicinal plant Brucea javanica (L.). An overview of their pharmacological activities is still unknown. The given research deals with highlights in their pharmacological result, molecular mechanism of action, synthetic progress, and pharmacokinetics. From previous evidence, bruceine derivatives are potential agents for anticancer treatments, as well as they are appropriate to treat inflammation, diabetes, and parasitic infections, and protect the neurons, kidneys, and lungs. Cytokine inhibitions, oxidative stress responses, and various signaling pathways, such as MAPK (mitogen-activated protein kinase) and NF-κB (nuclear factor-kappa B), have been proposed as the underlying mechanisms of action. Synthetic approaches to synthesize new derivatives with enhancement activities are based on free hydroxyl group modifications. Bruceines seem to be promptly absorbed by both oral and intravenous administrations, but their bioavailability is not high (less than 6%). Pre-clinical and clinical studies to prove their anticancer potential and other activities are urgent. Structural modifications, nano-combinations, and synergistic effects are necessary.
Collapse
Affiliation(s)
- Nguyen Quang Hop
- Faculty of Chemistry, Hanoi Pedagogical University 2 (HPU2), 32 Nguyen Van Linh, Xuanhoa, Phucyen, Vinhphuc, Vietnam
| | - Ninh The Son
- Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam.
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam.
| |
Collapse
|
3
|
Wang YK, Ma L, Wang ZQ, Wang Y, Li P, Jiang B, Wang SN. Clinicopathological features and differential diagnosis of gastric pleomorphic giant cell carcinoma. Open Life Sci 2023; 18:20220683. [PMID: 37724114 PMCID: PMC10505338 DOI: 10.1515/biol-2022-0683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 09/20/2023] Open
Abstract
The aim of this study was to investigate the clinicopathological features and differential diagnosis of gastric pleomorphic giant cell carcinoma. Histopathology, immunohistochemistry, and human epidermal growth factor receptor 2 (HER2) gene testing were conducted for seven cases of gastric pleomorphic giant cell carcinoma. In histomorphological terms, all seven cases involved pleomorphic giant cell carcinoma, accounting for more than 10% of the entire tumor, with pleomorphic spindle cells and giant cells mixed with various histomorphological structures of adenocarcinoma with high, intermediate, and low differentiation. There was large heterogeneity in the HER2 protein expression and HER2 gene amplification in the gastric pleomorphic giant cell carcinoma, and both levels of HER2 were focal in three cases, accounting for 42.9% (3/7). The mismatch repair gene proteins MLH1, MSH2, PMS2, and MSH6 were positive. Routine immunohistochemical markers, i.e., pan-cytokeratin, epithelial membrane antigen, villin, caudal-type homeobox 2, E-cadherin, and p53, were positive in the gastric pleomorphic giant cell carcinoma, while vimentin, calponin, smooth muscle actin, nestin, S-100, cluster of differentiation (CD) 99, desmin, and CD34 were focally expressed in both the spindle and the giant cells, with Ki-67-positive cells accounting for 70-80%. Gastric pleomorphic giant cell carcinoma presents multiple histomorphological features and is easily confused with various tumors. Clarifying the histopathological features of this type of tumor is important for differential diagnosis and precise treatment.
Collapse
Affiliation(s)
- Yang-Kun Wang
- Department of Pathology, The Fourth People’s Hospital of Longgang District, Shenzhen518123, China
| | - Li Ma
- Clinical Laboratory Department of the 989th Hospital of the PLA Joint Logistics Support Force, Luoyang471031, China
| | - Zhi-Qiang Wang
- Department of Pathology, Foresea Life Insurance Guangzhou General Hospital, Guangzhou511300, China
| | - Yue Wang
- Shenzhen Hezheng Hospital, Shenzhen518053, China
| | - Ping Li
- Department of Pathology, Peking University Shenzhen Hospital,
Shenzhen518036, China
| | - Bo Jiang
- Department of Pathology,
No. 990 Hospital of the PLA Joint Logistics Support Force, Zhumadian463000, China
| | - Su-Nan Wang
- Shenzhen Polytechnic,
Xili Lake, Xilihu Town, Nanshan District, Shenzhen518055, China
| |
Collapse
|
4
|
Márquez-Flores YK, Estrada-Pérez AR, Velasco-Quijano JS, Molina-Urrutia ZM, Rosales-Hernández MC, Fragoso-Morales LG, Meléndez-Camargo ME, Correa-Basurto J. LC-MS metabolomic evidence metabolites from Oenothera rosea L´ Hér. ex Ait with antiproliferative properties on DU145 human prostate cancer cell line. Biomed Pharmacother 2023; 165:115193. [PMID: 37517287 DOI: 10.1016/j.biopha.2023.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Prostate cancer remains one of the leading health issues without a fully effective treatment. Medicinal plants are one of the primary sources of compounds for treating numerous ailments. In this sense, the Oenothera genus contains metabolites with antiproliferative activity on cancer cells. For this, the study aimed to explore the antiproliferative activity of its extracts against prostate cancer and identify its metabolites (under metabolomics analyses) associated with anticancer and/or antiproliferative properties. For this reason, a LC-MS/MS-based metabolomic analysis was performed to demonstrate the possible metabolites present in O. rosea. In addition, the antiproliferative activity of different extracts in the human prostate cancer cell line DU145 was evaluated. All extracts have antiproliferative effects on DU145 cells at 72 h, with moderate activity being the best ethanolic either 48 or 72 h. Finally, by LC-MS/MS-based metabolomics, 307 compounds from aqueous, methanolic, ethanolic, and ethyl acetate extracts from which 40 putative metabolites identified were organized as anti-inflammatory, anticancer, and/or antiproliferative activities according to previously reported. These results provide evidence that O. rosea could be used as an antiproliferative agent due to its chemical contents used as polypharmacy with low concentration levels.
Collapse
Affiliation(s)
- Yazmín K Márquez-Flores
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, C.P. 07738 Ciudad de México, Mexico; Universidad Tecnológica de México - UNITEC MÉXICO - Campus Marina, Av. Marina Nacional 162 Col. Anáhuac Sección I, Miguel Hidalgo, C.P. 11320 Ciudad de México, Mexico.
| | - Alan R Estrada-Pérez
- Laboratorio de Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Laboratorio de Biofísica y Catálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, C.P. 11340 Ciudad de México, Mexico
| | - Jessica S Velasco-Quijano
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, C.P. 07738 Ciudad de México, Mexico
| | - Zintly M Molina-Urrutia
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, C.P. 07738 Ciudad de México, Mexico
| | - Martha C Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Leticia G Fragoso-Morales
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - María Estela Meléndez-Camargo
- Laboratorio de Farmacología y Toxicología renal y hepática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, C.P. 07738 Ciudad de México, Mexico
| | - José Correa-Basurto
- Laboratorio de Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Laboratorio de Biofísica y Catálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, C.P. 11340 Ciudad de México, Mexico.
| |
Collapse
|
5
|
Pan L, Han J, Lin M. Targeting breast cancer stem cells directly to treat refractory breast cancer. Front Oncol 2023; 13:981247. [PMID: 37251931 PMCID: PMC10213424 DOI: 10.3389/fonc.2023.981247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/02/2023] [Indexed: 05/31/2023] Open
Abstract
For patients with refractory breast cancer (BC), integrative immunotherapies are emerging as a critical component of treatment. However, many patients remain unresponsive to treatment or relapse after a period. Different cells and mediators in the tumor microenvironment (TME) play important roles in the progression of BC, and cancer stem cells (CSCs) are deemed the main cause of relapse. Their characteristics depend on their interactions with their microenvironment as well as on the inducing factors and elements in this environment. Strategies to modulate the immune system in the TME of BC that are aimed at reversing the suppressive networks within it and eradicating residual CSCs are, thus, essential for improving the current therapeutic efficacy of BC. This review focuses on the development of immunoresistance in BCs and discusses the strategies that can modulate the immune system and target breast CSCs directly to treat BC including immunotherapy with immune checkpoint blockades.
Collapse
Affiliation(s)
- Liping Pan
- Wuhan Center for Clinical Laboratory, Wuhan, China
| | - Juan Han
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Lin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Study on Effects of Cyclophosphamide Combined with Vinorelbine in Advanced Small Cell Lung Cancer and Anteroposterior Changes in MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3104879. [PMID: 36043147 PMCID: PMC9377958 DOI: 10.1155/2022/3104879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
Objective. To explore the effects of cyclophosphamide combined with vinorelbine in advanced small cell lung cancer (SCLC) and anteroposterior changes in MRI. Methods. The clinical data of 90 patients with advanced SCLC admitted to our hospital from April 2020 to April 2021 were retrospectively analyzed. They were divided into the control group and the study group according to the order of admission, with 45 cases in each group. The control group received the routine treatment, while the study group was treated with cyclophosphamide and vinorelbine to compare the indexes of imaging data and clinical indicators between the two groups before and after treatment. Results. There was no significant difference in the indexes of imaging data between the two groups before treatment
, and the indexes of imaging data in the study group were visibly lower than those in the control group after treatment
. The DCR in the study group was significantly higher than that in the control group after treatment
, while the QLQ-C30 scores and serum indices of the study group after treatment were significantly lower than those of the control group
. Conclusion. Patients with advanced SCLC were treated with cyclophosphamide and vinorelbine, which can effectively improve the quality of life and reduce the expression of inflammatory factors. This treatment model has a higher application value, and the treatment value is also reflected compared with the routine treatment. At the same time, the permeability parameters obtained by MRI can predict the therapeutic effects of cyclophosphamide and vinorelbine, and further studies are helpful to establish a better solution for patients.
Collapse
|
7
|
Chen YC, He XL, Qi L, Shi W, Yuan LW, Huang MY, Xu YL, Chen X, Gu L, Zhang LL, Lu JJ. Myricetin inhibits interferon-γ-induced PD-L1 and IDO1 expression in lung cancer cells. Biochem Pharmacol 2022; 197:114940. [PMID: 35120895 DOI: 10.1016/j.bcp.2022.114940] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/02/2022]
Abstract
Programmed death ligand-1 (PD-L1) and indoleamine 2, 3-dioxygenase 1 (IDO1) are immune checkpoints induced by interferon-γ (IFN-γ) in the tumor microenvironment, leading to immune escape of tumors. Myricetin (MY) is a flavonoid distributed in many edible and medicinal plants. In this study, MY was identified to inhibit IFN-γ-induced PD-L1 expression in human lung cancer cells. It also reduced the expression of IDO1 and the production of kynurenine which is the product catalyzed by IDO1, while didn't show obvious effect on the expression of major histocompatibility complex-I (MHC-I), a crucial molecule for antigen presentation. In addition, the function of T cells was evaluated using a co-culture system consist of lung cancer cells and the Jurkat-PD-1 T cell line overexpressing PD-1. MY restored the survival, proliferation, CD69 expression and interleukin-2 (IL-2) secretion of Jurkat-PD-1 T cells suppressed by IFN-γ-treated lung cancer cells. Mechanistically, IFN-γ up-regulated PD-L1 and IDO1 at the transcriptional level through the JAK-STAT-IRF1 axis, which was targeted and inhibited by MY. Together, our research revealed a new mechanism of MY mediated anti-tumor activity and highlighted the potential implications of MY in tumor immunotherapy.
Collapse
Affiliation(s)
- Yu-Chi Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xin-Ling He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Lu Qi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wei Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Luo-Wei Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mu-Yang Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yu-Lian Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Lei Gu
- Epigenetics Laboratory, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; Cardiopulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Le-Le Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Macao, China.
| |
Collapse
|
8
|
|