1
|
Kim SJ, Kim MS, Park HJ, Lee H, Yun JI, Lim HW, Lee ST. Screening of integrins localized on the surface of human epidermal melanocytes. In Vitro Cell Dev Biol Anim 2020; 56:435-443. [PMID: 32572848 DOI: 10.1007/s11626-020-00471-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
In vivo, melanocytes occupy three-dimensional (3D) space. Nevertheless, most experiments involving melanocytes are performed in a two-dimensional microenvironment, resulting in difficulty obtaining accurate results. Therefore, it is necessary to construct an artificial in vivo-like 3D microenvironment. Here, as a step towards engineering a precisely defined acellular 3D microenvironment supporting the maintenance of human epidermal melanocytes (HEMs), we examined the types of integrin heterodimers that are expressed transcriptionally, translationally, and functionally in HEMs. Real-time PCR and fluorescent immunoassay analyses were used to elucidate the expression of integrin α and β subunit genes at the transcriptional and translational levels, respectively. The functionality of the presumed integrin heterodimers was confirmed using attachment and antibody-inhibition assays. Among the genes encoding 12 integrin subunits (α1, α2, α3, α4, α5, α6, α7, αV, β1, β3, β5, and β8) showing significantly higher transcription levels, proteins translated from the integrin α2, α4, α5, β1, β3, and β5 subunit genes were detected on the surface of HEMs. These HEMs showed significantly increased adhesion to collagen I, fibronectin, laminin, and vitronectin, and functional blockade of the integrin α2 subunits significantly inhibited adhesion to collagen I, fibronectin, and laminin. In addition, there was no significant inhibition of the adhesion to fibronectin or vitronectin in HEMs with functional blockade of the integrin α4, α5, or αV subunits. These results indicate that the active integrin α2β1 heterodimer and the inactive integrin α4, α5, αV, β3, and β5 subunits are all localized on the surface of HEMs.
Collapse
Affiliation(s)
- Seong Jae Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Min Seong Kim
- Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hye Jin Park
- Department of Animal Life Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Hyun Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jung Im Yun
- Institute of Animal Resources, Kangwon National University, Chuncheon, 24341, South Korea
| | - Hye Won Lim
- Shebah Biotech Inc, Chuncheon, 24398, South Korea
| | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, 24341, South Korea. .,Department of Applied Animal Science, Kangwon National University, Chuncheon, 24341, South Korea. .,KustoGen Inc, Chuncheon, 24341, South Korea.
| |
Collapse
|
2
|
Park C, Kim TJ. Expansion and Sub-Classification of T Cell-Dependent Antibody Responses to Encompass the Role of Innate-Like T Cells in Antibody Responses. Immune Netw 2018; 18:e34. [PMID: 30402329 PMCID: PMC6215906 DOI: 10.4110/in.2018.18.e34] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
In addition to T cell-dependent (TD) Ab responses, T cells can also regulate T cell-independent (TI) B cell responses in the absence of a specific major histocompatibility complex (MHC) class II and antigenic peptide-based interaction between T and B cells. The elucidation of T cells capable of supporting TI Ab responses is important for understanding the cellular mechanism of different types of TI Ab responses. Natural killer T (NKT) cells represent 1 type of helper T cells involved in TI Ab responses and more candidate helper T cells responsible for TI Ab responses may also include γδ T cells and recently reported B-1 helper CD4+ T cells. Marginal zone (MZ) B and B-1 cells, 2 major innate-like B cell subsets considered to function independently of T cells, interact with innate-like T cells. Whereas MZ B and NKT cells interact mutually for a rapid response to blood-borne infection, peritoneal memory phenotype CD49dhighCD4+ T cells support natural Ab secretion by B-1 cells. Here the role of innate-like T cells in the so-called TI Ab response is discussed. To accommodate the involvement of T cells in the TI Ab responses, we suggest an expanded classification of TD Ab responses that incorporate cognate and non-cognate B cell help by innate-like T cells.
Collapse
Affiliation(s)
- Chanho Park
- Division of Immunobiology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Tae Jin Kim
- Division of Immunobiology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
3
|
Lee JG, Jang JY, Fang T, Xu Y, Yan JJ, Ryu JH, Jeon HJ, Koo TY, Kim DK, Oh KH, Kim TJ, Yang J. Identification of Human B-1 Helper T Cells With a Th1-Like Memory Phenotype and High Integrin CD49d Expression. Front Immunol 2018; 9:1617. [PMID: 30061889 PMCID: PMC6054961 DOI: 10.3389/fimmu.2018.01617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/29/2018] [Indexed: 11/13/2022] Open
Abstract
Human B-1 cells have been proposed to be CD20+CD27+CD43+CD1c- B cells found in the umbilical cord and adult peripheral blood, but their regulatory mechanisms have not been well elucidated. Previously, we reported that mouse CD49dhigh CD4+ T cells could enhance the secretion of natural antibodies by B-1 cells. In this study, we aimed to investigate the presence and helper functions of the human equivalents of murine CD49dhigh CD4+ T cells. Here, we showed that human CD49dhigh CD4+ T cells found in the peritoneal cavity (PEC), spleen, and peripheral blood can enhance the production of IgM antibodies by B-1 cells. As revealed in mouse, CD49dhigh CD4+ T cells were more abundant in the PEC and showed a higher tendency to form conjugates with B cells than CD49dlow CD4+ T cells. Moreover, CD49dhigh CD4+ T cells showed a Th1-like memory phenotype, characterized by high expression of CD44 and CXCR3; low expression of CD62L and CCR7; rapid production of IFN-γ, tumor necrosis factor-α, and IL-2 upon stimulation with phorbol myristate acetate and ionomycin; and rapid proliferation upon stimulation with anti-CD3 and anti-CD28 antibodies. These cells also expressed high levels of PD-1, ICOS, and CD5, suggesting that they are undergoing chronic stimulation. Remarkably, CD49dhigh CD4+ T cells specifically helped B-1 cells, but not follicular memory B cells (CD27+ CD43-CD1c-) or marginal zone B cells (CD27+CD43-CD1c+), produce IgM and IgG antibodies. In parallel, the titer of human anti-blood group A IgM was positively correlated with the frequency of CD49dhigh CD4+ T cells. In conclusion, we identified human CD49dhigh CD4+ T cells with a Th1-like memory phenotype that secrete Th1 proinflammatory cytokines and help B-1 cells secrete antibodies, thereby aiding in primary defense. We suggest that these CD49dhigh CD4+ T cells are a unique type of B-cell helper T cells distinct from follicular helper T cells.
Collapse
Affiliation(s)
- Jae-Ghi Lee
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Joon Young Jang
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Taishi Fang
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Yixuan Xu
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji-Jing Yan
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Hwa Ryu
- Transplantation Center, Seoul National University Hospital, Seoul, South Korea
| | - Hee Jung Jeon
- Department of Internal Medicine, Hallym University College of Medicine, Seoul, South Korea
| | - Tai Yeon Koo
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Tae Jin Kim
- Division of Immunobiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jaeseok Yang
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Center, Seoul National University Hospital, Seoul, South Korea.,Department of Surgery, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|