1
|
Dolbec D, Lehoux M, de Beauville AA, Zahn A, Di Noia JM, Segura M. Unmutated but T cell dependent IgM antibodies targeting Streptococcus suis play an essential role in bacterial clearance. PLoS Pathog 2024; 20:e1011957. [PMID: 38241393 PMCID: PMC10829992 DOI: 10.1371/journal.ppat.1011957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
Streptococcus suis serotype 2 is an important encapsulated bacterial swine pathogen and zoonotic agent for which no effective vaccine exists. The interaction with B cells and the humoral response against S. suis are poorly understood despite their likely relevance for a potential vaccine. We evaluated germinal center (GC) B cell kinetics, as well as the production and role of S. suis-specific antibodies following infections in a mouse model. We found that mice infected with S. suis developed GC that peaked 13-21 days post-infection. GC further increased and persisted upon periodic reinfection that mimics real life conditions in swine farms. Anti-S. suis IgM and several IgG subclasses were produced, but antibodies against the S. suis capsular polysaccharide (CPS) were largely IgM. Interestingly, depletion of total IgG from the wild-type mice sera had no effect on bacterial killing by opsonophagocytosis in vitro. Somatic hypermutation and isotype switching were dispensable for controlling the infection or anti-CPS IgM production. However, T cell-deficient (Tcrb-/-) mice were unable to control bacteremia, produce optimal anti-CPS IgM titers, or elicit antibodies with opsonophagocytic activity. SAP deficiency, which prevents GC formation but not extrafollicular B cell responses, ablated anti S. suis-IgG production but maintained IgM production and eliminated the infection. In contrast, B cell deficient mice were unable to control bacteremia. Collectively, our results indicate that the antibody response plays a large role in immunity against S. suis, with GC-independent but T cell-dependent germline IgM being the major effective antibody specificities. Our results further highlight the importance IgM, and potentially anti-CPS antibodies, in clearing S. suis infections and provide insight for future development of S. suis vaccines.
Collapse
Affiliation(s)
- Dominic Dolbec
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Mélanie Lehoux
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Alexis Asselin de Beauville
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, Center for Immunity, Inflammation and Infectious Diseases, Quebec, Canada
| | - Javier Marcelo Di Noia
- Institut de Recherches Cliniques de Montréal, Center for Immunity, Inflammation and Infectious Diseases, Quebec, Canada
- Department of Medicine, Faculty of Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
2
|
Lin Y, Liu Q, Chen Z, Zheng F, Huang H, Yu C, Yang J. The immunomodulatory effect of koumine on B cells under dependent and independent responses by T cells. Eur J Pharmacol 2022; 914:174690. [PMID: 34890543 DOI: 10.1016/j.ejphar.2021.174690] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Abstract
Dysregulated activation of polyclonal B cells and production of pathogenic antibodies are involved in the development of rheumatoid arthritis (RA). Therefore, targeted B cell therapy is effective against RA. Gelsemium elegans (Gardn. & Champ.) Benth., a toxic plant widely distributed in Southeast Asia, has been used for treating rheumatoid pain, neuropathic pain, spasticity, skin ulcers, and cancers for many years in traditional Chinese medicine. Koumine, an alkaloid monomer from Gelsemium elegans Benth., exerts therapeutic effects against RA. However, whether koumine affects B cells remains unknown. In this study, the effect of koumine on B cells under T cell-independent (TI) and T cell-dependent (TD) immune responses is investigated in vitro and in vivo. Mouse primary B cells were obtained by immunomagnetic bead sorting, and immunomodulatory effects of koumine on the activation, proliferation, and differentiation of B cells were determined in TI and TD models induced by lipopolysaccharide (LPS) and anti-CD40 antibodies in vitro, respectively. The humoral immune responses of TI and TD were established using NP-AECM-FICOLL and NP-CGG in C57BL/6J mice, respectively. We found that koumine inhibited B cell differentiation in the TI model and inhibited B cell activation and proliferation in the TD model in vitro. Koumine also inhibited antibody secretion in TI immune response, TD initial immune response, and in TD secondary immune response. Our results reveal that koumine has a direct and indirect immune regulatory effect on B cells, showing that it can directly inhibit the differentiation and secretion of autoantibodies after abnormal activation of B cells, and indirectly inhibit the activation and proliferation of TD B cells to reduce the secretion of antibodies. It may be an important mechanism for its anti-RA effect in mice, providing a rationale and laboratory data support for the application of koumine in anti-human RA therapy.
Collapse
Affiliation(s)
- Yarong Lin
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Qian Liu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zehong Chen
- Laboratory of Medical Function, Basic Medical Experimental Teaching Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Fengting Zheng
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Huihui Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Changxi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
3
|
Choi SW, Woo J, Park KS, Ko J, Jeon YK, Choi SW, Yoo HY, Kho I, Kim TJ, Kim SJ. Higher expression of KCNK10 (TREK-2) K + channels and their functional upregulation by lipopolysaccharide treatment in mouse peritoneal B1a cells. Pflugers Arch 2021; 473:659-671. [PMID: 33586023 DOI: 10.1007/s00424-021-02526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/10/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022]
Abstract
Innate-like CD5+ B1a cells localized in serous cavities are activated by innate stimuli, such as lipopolysaccharide (LPS), leading to T cell-independent antibody responses. Although ion channels play crucial roles in the homeostasis and activation of immune cells, the electrophysiological properties of B1a cells have not been investigated to date. Previously, in the mouse B cell lymphoma cells, we found that the voltage-independent two-pore-domain potassium (K2P) channels generate a negative membrane potential and drive Ca2+ influx. Here, we newly compared the expression and activities of K2P channels in mouse splenic follicular B (FoB), marginal zone B (MZB), and peritoneal B1a cells. Next-generation sequencing analysis showed higher levels of transcripts for TREK-2 and TWIK-2 in B1a cells than those in FoB or MZB cells. Electrophysiological analysis, using patch clamp technique, revealed higher activity of TREK-2 with the characteristic large unitary conductance (~ 250 pS) in B1a than that in FoB or MZB cells. TREK-2 activity was further increased by LPS treatment (>2 h), which was more prominent in B1a than that in MZB or FoB cells. The cytosolic Ca2+ concentration of B cells was decreased by high-K+-induced depolarization (ΔRKCl (%)), suggesting the basal Ca2+ influx to be driven by negative membrane potential. The LPS treatment significantly increased the ΔRKCl (%) in B1a, though not in FoB and MZB cells. Our study was the first to compare the K2P channels in mouse primary B cell subsets, elucidating the functional upregulation of TREK-2 and augmentation of Ca2+ influx by the stimulation of Toll-like receptor 4 in B1a cells.
Collapse
Affiliation(s)
- Si Won Choi
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joohan Woo
- Department of Physiology and Ion Channel Disease Research Center, Dongguk University College of Medicine, Seoul, Republic of Korea
| | - Kyung Sun Park
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea
| | - Juyeon Ko
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Keul Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong Woo Choi
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Physiology and Ion Channel Disease Research Center, Dongguk University College of Medicine, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hae Young Yoo
- Department of Nursing, Chung-Ang University, Seoul, Republic of Korea
| | - Inseong Kho
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Tae Jin Kim
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Lee HW, Chung YS, Kim TJ. Heterogeneity of Human γδ T Cells and Their Role in Cancer Immunity. Immune Netw 2020; 20:e5. [PMID: 32158593 PMCID: PMC7049581 DOI: 10.4110/in.2020.20.e5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 12/24/2022] Open
Abstract
The γδ T cells are unconventional lymphocytes that function in both innate and adaptive immune responses against various intracellular and infectious stresses. The γδ T cells can be exploited as cancer-killing effector cells since γδ TCRs recognize MHC-like molecules and growth factor receptors that are upregulated in cancer cells, and γδ T cells can differentiate into cytotoxic effector cells. However, γδ T cells may also promote tumor progression by secreting IL-17 or other cytokines. Therefore, it is essential to understand how the differentiation and homeostasis of γδ T cells are regulated and whether distinct γδ T cell subsets have different functions. Human γδ T cells are classified into Vδ2 and non-Vδ2 γδ T cells. The majority of Vδ2 γδ T cells are Vγ9δ2 T cells that recognize pyrophosphorylated isoprenoids generated by the dysregulated mevalonate pathway. In contrast, Vδ1 T cells expand from initially diverse TCR repertoire in patients with infectious diseases and cancers. The ligands of Vδ1 T cells are diverse and include the growth factor receptors such as endothelial protein C receptor. Both Vδ1 and Vδ2 γδ T cells are implicated to have immunotherapeutic potentials for cancers, but the detailed elucidation of the distinct characteristics of 2 populations will be required to enhance the immunotherapeutic potential of γδ T cells. Here, we summarize recent progress regarding cancer immunology of human γδ T cells, including their development, heterogeneity, and plasticity, the putative mechanisms underlying ligand recognition and activation, and their dual effects on tumor progression in the tumor microenvironment.
Collapse
Affiliation(s)
- Hye Won Lee
- Department of Hospital Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yun Shin Chung
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Tae Jin Kim
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| |
Collapse
|
5
|
Yang J, Dang G, Lü S, Liu H, Ma X, Han L, Deng J, Miao Y, Li X, Shao F, Jiang C, Xu Q, Wang X, Feng J. T-cell-derived extracellular vesicles regulate B-cell IgG production via pyruvate kinase muscle isozyme 2. FASEB J 2019; 33:12780-12799. [PMID: 31480861 DOI: 10.1096/fj.201900863r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intercellular communication between lymphocytes plays a fundamental role in numerous immune responses. Previously, we demonstrated that hyperhomocysteinemia (HHcy) induced T cell intracellular glycolytic-lipogenic reprogramming and IFN-γ secretion via pyruvate kinase muscle isozyme 2 (PKM2) to accelerate atherosclerosis. Usually, B cells partially obtain help from T cells in antibody responses. However, whether PKM2 activation in T cells regulates B cell antibody production is unknown. Extracellular vesicles (EVs) are important cellular communication vehicles. Here, we found that PKM2 activator TEPP46-stimulated T-cell-derived EVs promoted B-cell IgG secretion. Conversely, EVs secreted from PKM2-null T cells were internalized into B cells and markedly inhibited B-cell mitochondrial programming, activation, and IgG production. Mechanistically, lipidomics analyses showed that increased ceramides in PKM2-activated T-cell EVs were mainly responsible for enhanced B cell IgG secretion induced by these EVs. Finally, quantum dots (QDs) were packaged with PKM2-null T cell EVs and anti-CD19 antibody to exert B-cell targeting and inhibit IgG production, eventually ameliorating HHcy-accelerated atherosclerosis in vivo. Thus, PKM2-mediated EV ceramides in T cells may be an important cargo for T-cell-regulated B cell IgG production, and QD-CD19-PKM2-null T cell EVs hold high potential to treat B cell overactivation-related diseases.-Yang, J., Dang, G., Lü, S., Liu, H., Ma, X., Han, L., Deng, J., Miao, Y., Li, X., Shao, F., Jiang, C., Xu, Q., Wang, X., Feng, J. T-cell-derived extracellular vesicles regulate B-cell IgG production via pyruvate kinase muscle isozyme 2.
Collapse
Affiliation(s)
- Juan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Guohui Dang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Silin Lü
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Xiaolong Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Lulu Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jiacheng Deng
- Cardiovascular Division, British Heart Foundation (BHF) Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Yutong Miao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Xiaopeng Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Fangyu Shao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Qingbo Xu
- Cardiovascular Division, British Heart Foundation (BHF) Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Juan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|