1
|
Capasso L, De Masi L, Sirignano C, Maresca V, Basile A, Nebbioso A, Rigano D, Bontempo P. Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential. Molecules 2025; 30:654. [PMID: 39942757 PMCID: PMC11821029 DOI: 10.3390/molecules30030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Epigallocatechin gallate (EGCG), the predominant catechin in green tea, comprises approximately 50% of its total polyphenol content and has garnered widespread recognition for its significant therapeutic potential. As the principal bioactive component of Camellia sinensis, EGCG is celebrated for its potent antioxidant, anti-inflammatory, cardioprotective, and antitumor properties. The bioavailability and metabolism of EGCG within the gut microbiota underscore its systemic effects, as it is absorbed in the intestine, metabolized into bioactive compounds, and transported to target organs. This compound has been shown to influence key physiological pathways, particularly those related to lipid metabolism and inflammation, offering protective effects against a variety of diseases. EGCG's ability to modulate cell signaling pathways associated with oxidative stress, apoptosis, and immune regulation highlights its multifaceted role in health promotion. Emerging evidence underscores EGCG's therapeutic potential in preventing and managing a range of chronic conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes. Given the growing prevalence of lifestyle-related diseases and the increasing interest in natural compounds, EGCG presents a promising avenue for novel therapeutic strategies. This review aims to summarize current knowledge on EGCG, emphasizing its critical role as a versatile natural bioactive agent with diverse clinical applications. Further exploration in both experimental and clinical settings is essential to fully unlock its therapeutic potential.
Collapse
Affiliation(s)
- Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and BioResources (IBBR), Via Università 133, 80055 Portici, Italy;
| | - Carmina Sirignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Viviana Maresca
- Department of Life Science, Health, and Health Professions, Link Campus University, 00165 Rome, Italy;
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Daniela Rigano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| |
Collapse
|
2
|
Ouchaoui AA, Hadad SEE, Aherkou M, Fadoua E, Mouad M, Ramli Y, Kettani A, Bourais I. Unlocking Benzosampangine's Potential: A Computational Approach to Investigating, Its Role as a PD-L1 Inhibitor in Tumor Immune Evasion via Molecular Docking, Dynamic Simulation, and ADMET Profiling. Bioinform Biol Insights 2024; 18:11779322241298591. [PMID: 39564188 PMCID: PMC11574905 DOI: 10.1177/11779322241298591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
The interaction between programmed cell death protein 1 (PD-1) and its ligand PD-L1 plays a crucial role in tumor immune evasion, presenting a critical target for cancer immunotherapy. Despite being effective, current monoclonal antibodies present some drawbacks such as high costs, toxicity, and resistance development. Therefore, the development of small-molecule inhibitors is necessary, especially those derived from natural sources. In this study, benzosampangine is predicted as a promising PD-L1 inhibitor, with potential applications in cancer immunotherapy. Utilizing the high-resolution crystal structure of human PD-L1 (PDB ID: 5O45), we screened 511 natural compounds, identifying benzosampangine as a top candidate with exceptional inhibitory properties. Molecular docking predicted that benzosampangine exhibits a strong binding affinity for PD-L1 (-9.4 kcal/mol) compared with established controls such as CA-170 (-6.5 kcal/mol), BMS-202 (-8.6 kcal/mol), and pyrvinium (-8.9 kcal/mol). The compound's predicted binding efficacy is highlighted by robust interactions with key amino acids (ILE54, TYR56, GLN66, MET115, ILE116, SER117, ALA121, ASP122) within the active site, notably forming 3 Pi-sulfur interactions with MET115-an interaction absents in control inhibitors. In addition, ADMET profiling suggests that over the control molecules, benzosampangine has several key advantages, including favorable solubility, permeability, metabolic stability, and low toxicity, while adhering to Lipinski's rule of five. Molecular dynamic simulations predict the stability of the benzosampangine-PD-L1 complex, reinforcing its potential to sustain inhibition of the PD-1/PD-L1 pathway. MMGBSA analysis calculated a binding free energy (ΔGbind) of -39.39 kcal/mol for the benzosampangine-PD-L1 complex, with significant contributions from Coulombic, lipophilic, and Van der Waals interactions, validating the predicted docking results. This study investigates in silico benzosampangine, predicting its better molecular interactions and pharmacokinetic profile compared with several already known PD-L1 inhibitors.
Collapse
Affiliation(s)
- Abderrahim Ait Ouchaoui
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, Morocco
| | - Salah Eddine El Hadad
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, Morocco
| | - Marouane Aherkou
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, Morocco
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Elkamili Fadoua
- Rabat Medical and Pharmacy School, Mohammed Vth University, Rabat, Morocco
| | - Mkamel Mouad
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, Morocco
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Anass Kettani
- Laboratory of Biology and Health, URAC 34, Faculty of Sciences Ben M'sik, Health and Biotechnology Research Center, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ilhame Bourais
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
- Mohammed VI Center for Research and Innovation (CM6RI), Rabat, Morocco
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
3
|
Hasturk B, Eren F. A therapeutic approach for the hepatitis C virus: in silico design of an antisense oligonucleotide-based candidate capsid inhibitor. Virus Genes 2024; 60:446-454. [PMID: 39083128 DOI: 10.1007/s11262-024-02088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/30/2024] [Indexed: 09/10/2024]
Abstract
Direct-acting antiviral (DAA) drugs have been shown to effectively reduce viral load and cure a high proportion of hepatitis C virus (HCV) infections. However, costs associated with the course of therapy and any possible adverse effects should also be considered. It is important to acknowledge, moreover, that certain groups may not be eligible for treatment. Given that there is currently no approved vaccine for HCV infection, the need for an effective, safe, and accessible treatment remains a crucial priority. The aim of this study is to develop an antisense oligonucleotide (ASO)-based therapeutic drug that can inhibit HCV capsid. After analyzing 817 HCV capsid protein mRNA sequences using the NCBI Virus Data Portal, a conserved region of 7 nucleotides (nt) was identified in all genotypes (1-7). However, because of its high GC% content, this region is not a suitable target for ASO. Conversely, the other highly conserved region, which is only 8 nt long, was preserved in 801 datasets after removing missing and differing sequence data. The candidate ASO was then investigated using computer simulations to assess its potential. Thus, it is possible that the ASO sequence consisting of 8 nt could be a viable therapeutic target for the inhibition of HCV capsid. Furthermore, the 7 nt sequence, which is conserved in all datasets, may be targeted using alternative strategies in lieu of ASO-based targeting.
Collapse
Affiliation(s)
- Burcu Hasturk
- Department of Medical Biology and Genetics, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Fatih Eren
- Faculty of Medicine, Department of Medical Biology, Marmara University, Istanbul, Turkey.
- Institute of Gastroenterology, Liver Research Unit, Marmara University, Istanbul, Turkey.
| |
Collapse
|
4
|
Li D, Cao D, Cui Y, Sun Y, Jiang J, Cao X. The potential of epigallocatechin gallate in the chemoprevention and therapy of hepatocellular carcinoma. Front Pharmacol 2023; 14:1201085. [PMID: 37292151 PMCID: PMC10244546 DOI: 10.3389/fphar.2023.1201085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most notorious malignancies globally, has a high fatality and poor prognosis. Though remarkable breakthroughs have been made in the therapeutic strategies recently, the overall survival of HCC remains unsatisfactory. Consequently, the therapy of HCC remains a great challenge. Epigallocatechin gallate (EGCG), a natural polyphenol extracted from the leaves of the tea bush, has been extensively investigated for its antitumor effects. In this review, we summarize the previous literature to elucidate the roles of EGCG in the chemoprophylaxis and therapy of HCC. Accumulating evidence has confirmed EGCG prevents and inhibits the hepatic tumorigenesis and progression through multiple biological mechanisms, mainly involving hepatitis virus infection, oxidative stress, proliferation, invasion, migration, angiogenesis, apoptosis, autophagy, and tumor metabolism. Furthermore, EGCG enhances the efficacy and sensitivity of chemotherapy, radiotherapy, and targeted therapy in HCC. In conclusion, preclinical studies have confirmed the potential of EGCG for chemoprevention and therapy of HCC under multifarious experimental models and conditions. Nevertheless, there is an urgent need to explore the safety and efficacy of EGCG in the clinical practice of HCC.
Collapse
Affiliation(s)
- Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Jiang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Saputro AH, Artarini AA, Tjahjono DH, Damayanti S. The long and stumble way to find potential active compounds from plants for defeating hepatitis B and C: review. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e85160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hepatitis is a liver illness caused by virus such as hepatitis A virus, hepatitis B virus and hepatitis C virus. Hepatitis B and C are considerably more usual and induce more cirrhosis and dead worldwide than hepatitis A. Although drugs that are currently often used in the medication of hepatitis B and C, the finding of recent drug from various resources including herbal has been intensively developed. Therefore, the purpose of this review is to consider the possibility of plant’s compounds as anti-HBV and anti-HCV. From the results of a review of several articles, several plant’s compound have shown effectiveness againts HBV and HCV by in silico, in vitro and in vivo studies. In conclusion, several plant’s active compounds are possibility to be developed as anti-hepatitis B and C.
Collapse
|
6
|
Nanotechnology Applications of Flavonoids for Viral Diseases. Pharmaceutics 2021; 13:pharmaceutics13111895. [PMID: 34834309 PMCID: PMC8625292 DOI: 10.3390/pharmaceutics13111895] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Recent years have witnessed the emergence of several viral diseases, including various zoonotic diseases such as the current pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Other viruses, which possess pandemic-causing potential include avian flu, Ebola, dengue, Zika, and Nipah virus, as well as the re-emergence of SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) coronaviruses. Notably, effective drugs or vaccines against these viruses are still to be discovered. All the newly approved vaccines against the SARS-CoV-2-induced disease COVID-19 possess real-time possibility of becoming obsolete because of the development of ‘variants of concern’. Flavonoids are being increasingly recognized as prophylactic and therapeutic agents against emerging and old viral diseases. Around 10,000 natural flavonoid compounds have been identified, being phytochemicals, all plant-based. Flavonoids have been reported to have lesser side effects than conventional anti-viral agents and are effective against more viral diseases than currently used anti-virals. Despite their abundance in plants, which are a part of human diet, flavonoids have the problem of low bioavailability. Various attempts are in progress to increase the bioavailability of flavonoids, one of the promising fields being nanotechnology. This review is a narrative of some anti-viral dietary flavonoids, their bioavailability, and various means with an emphasis on the nanotechnology system(s) being experimented with to deliver anti-viral flavonoids, whose systems show potential in the efficient delivery of flavonoids, resulting in increased bioavailability.
Collapse
|
7
|
Identification of Potential HCV Inhibitors Based on the Interaction of Epigallocatechin-3-Gallate with Viral Envelope Proteins. Molecules 2021; 26:molecules26051257. [PMID: 33652639 PMCID: PMC7956288 DOI: 10.3390/molecules26051257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/14/2021] [Accepted: 02/20/2021] [Indexed: 12/25/2022] Open
Abstract
Hepatitis C is affecting millions of people around the globe annually, which leads to death in very high numbers. After many years of research, hepatitis C virus (HCV) remains a serious threat to the human population and needs proper management. The in silico approach in the drug discovery process is an efficient method in identifying inhibitors for various diseases. In our study, the interaction between Epigallocatechin-3-gallate, a component of green tea, and envelope glycoprotein E2 of HCV is evaluated. Epigallocatechin-3-gallate is the most promising polyphenol approved through cell culture analysis that can inhibit the entry of HCV. Therefore, various in silico techniques have been employed to find out other potential inhibitors that can behave as EGCG. Thus, the homology modelling of E2 protein was performed. The potential lead molecules were predicted using ligand-based as well as structure-based virtual screening methods. The compounds obtained were then screened through PyRx. The drugs obtained were ranked based on their binding affinities. Furthermore, the docking of the topmost drugs was performed by AutoDock Vina, while its 2D interactions were plotted in LigPlot+. The lead compound mms02387687 (2-[[5-[(4-ethylphenoxy) methyl]-4-prop-2-enyl-1,2,4-triazol-3-yl] sulfanyl]-N-[3(trifluoromethyl) phenyl] acetamide) was ranked on top, and we believe it can serve as a drug against HCV in the future, owing to experimental validation.
Collapse
|
8
|
VAROL M. Photoprotective Properties of Natural Pulvinic Acid Derivatives toward Ultraviolet-Induced Damages. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2018. [DOI: 10.21448/ijsm.457412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Hernández-Aquino E, Muriel P. Beneficial effects of naringenin in liver diseases: Molecular mechanisms. World J Gastroenterol 2018; 24:1679-1707. [PMID: 29713125 PMCID: PMC5922990 DOI: 10.3748/wjg.v24.i16.1679] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/04/2018] [Accepted: 04/15/2018] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are caused by different etiological agents, mainly alcohol consumption, viruses, drug intoxication or malnutrition. Frequently, liver diseases are initiated by oxidative stress and inflammation that lead to the excessive production of extracellular matrix (ECM), followed by a progression to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). It has been reported that some natural products display hepatoprotective properties. Naringenin is a flavonoid with antioxidant, antifibrogenic, anti-inflammatory and anticancer properties that is capable of preventing liver damage caused by different agents. The main protective effects of naringenin in liver diseases are the inhibition of oxidative stress, transforming growth factor (TGF-β) pathway and the prevention of the transdifferentiation of hepatic stellate cells (HSC), leading to decreased collagen synthesis. Other effects include the inhibition of the mitogen activated protein kinase (MAPK), toll-like receptor (TLR) and TGF-β non-canonical pathways, the inhibition of which further results in a strong reduction in ECM synthesis and deposition. In addition, naringenin has shown beneficial effects on nonalcoholic fatty liver disease (NAFLD) through the regulation of lipid metabolism, modulating the synthesis and oxidation of lipids and cholesterol. Moreover, naringenin protects from HCC, since it inhibits growth factors such as TGF-β and vascular endothelial growth factor (VEGF), inducing apoptosis and regulating MAPK pathways. Naringenin is safe and acts by targeting multiple proteins. However, it possesses low bioavailability and high intestinal metabolism. In this regard, formulations, such as nanoparticles or liposomes, have been developed to improve naringenin bioavailability. We conclude that naringenin should be considered in the future as an important candidate in the treatment of different liver diseases.
Collapse
Affiliation(s)
- Erika Hernández-Aquino
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 07000, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 07000, Mexico
| |
Collapse
|
10
|
Quintero-Gil C, Parra-Suescún J, Lopez-Herrera A, Orduz S. In-silico design and molecular docking evaluation of peptides derivatives from bacteriocins and porcine beta defensin-2 as inhibitors of Hepatitis E virus capsid protein. Virusdisease 2017; 28:281-288. [PMID: 29291214 DOI: 10.1007/s13337-017-0383-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/29/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) is considered the main etiological agent that causes acute hepatitis. It is estimated that 20 million cases occur annually worldwide, reaching mortality rates of 28% in pregnant women. To date, available treatments and vaccines have not been entirely effective. In this study, six antiviral peptides derived from the sequences of porcine Beta-Defensin-2 and bacteriocins Nisin and Subtilosin were generate using in silico tools in order to propose new antiviral agents. Through the use of molecular docking, interactions between the HEV capsid protein and the six new antiviral peptide candidates were evaluated. A peptide of 15 residues derived from Subtilosin showed the best docking energy (-7.0 kcal/mol) with the capsid protein. This is the first report to our knowledge involving a non-well study viral protein interacting with peptides susceptibles to being synthesized, and that could be subsequently evaluated in vitro; moreover, this study provide novel information on the nature of the dimerization pocket of the HEV capsid protein, and could help to understand the first steps in the viral replication cycle, needed for the virus entry to the host cell.
Collapse
Affiliation(s)
- Carolina Quintero-Gil
- Escuela de Biociencias, Grupo Biología Funcional, Universidad Nacional de Colombia, Sede Medellín, Calle 59A # 63-20, Medellín, Colombia
| | - Jaime Parra-Suescún
- Facultad de Ciencias Agrarias, Grupo Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia, Sede Medellín, Calle 59A # 63-20, Medellín, Colombia
| | - Albeiro Lopez-Herrera
- Facultad de Ciencias Agrarias, Grupo Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia, Sede Medellín, Calle 59A # 63-20, Medellín, Colombia
| | - Sergio Orduz
- Escuela de Biociencias, Grupo Biología Funcional, Universidad Nacional de Colombia, Sede Medellín, Calle 59A # 63-20, Medellín, Colombia
| |
Collapse
|