1
|
Shaha CK, Karmaker S, Saha TK. Efficient adsorptive removal of levofloxacin using sulfonated graphene oxide: Adsorption behavior, kinetics, and thermodynamics. Heliyon 2024; 10:e40319. [PMID: 39641076 PMCID: PMC11617717 DOI: 10.1016/j.heliyon.2024.e40319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/03/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Water pollution by antibiotic residues poses a potential threat to environmental and human health. Graphene-based materials are highly stable, recyclable and effective adsorbents for efficiently removing antibiotics from polluted water. In this study, the adsorption behavior of levofloxacin onto sulfonated graphene oxide (SGO) was investigated by varying the contact period, solution pH, adsorbent quantity, levofloxacin concentration, inorganic ions, and solution temperature. Spectroscopic and microscopic techniques were employed to confirm the adsorptive interaction between levofloxacin and SGO. The adsorption process was most accurately characterized by the pseudo-second-order kinetic model and the Langmuir isotherm model, as indicated by their high correlation coefficients (R 2) and low root-mean-square error (RMSE) values. The maximal quantity of levofloxacin that can be adsorbed onto SGO was determined to be 1250 μmol/g at pH 4 and 25 °C using the Langmuir model. Thermodynamic studies reveal that the process of levofloxacin adsorption onto SGO is endothermic and spontaneous in nature. Taking into consideration the results of adsorption, desorption and regeneration studies, it is proposed that SGO can be applied as an economic viable agent for the adsorptive removal of levofloxacin from the aqueous environment.
Collapse
Affiliation(s)
- Chironjit Kumar Shaha
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
- Veterinary Drug Residue Analysis Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment (AERE), Gonokbari, Savar, Dhaka, 1349, Bangladesh
| | - Subarna Karmaker
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Tapan Kumar Saha
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| |
Collapse
|
2
|
Agha OA, Girgis GN, El-Sokkary MM, Soliman OAEA. Spanlastic-laden in situ gel as a promising approach for ocular delivery of Levofloxacin: In-vitro characterization, microbiological assessment, corneal permeability and in-vivo study. Int J Pharm X 2023; 6:100201. [PMID: 37560488 PMCID: PMC10407905 DOI: 10.1016/j.ijpx.2023.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/09/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023] Open
Abstract
The objective of this study was to encapsulate the antibacterial drug levofloxacin hemihydrate (LF) into spanlastics (SLs) followed by incorporation into gelrite in situ gel to enhance its antibacterial activity and sustain ocular delivery. A combination of Span 60 as main vesicle component and Tweens as an edge activator (EA) was used to prepare SLs using the thin film hydration method. A 32 factorial design was applied to study the effect of formulation variables (ratio of Span 60: EA and type of EA) on SLs characteristics (encapsulation efficiency (EE%), particle size (PS), zeta potential (ZP) and percentage of drug released). In-vitro antimicrobial study was conducted to determine the antibacterial activity of the optimized formula. Finally confocal laser scanning microscopy (CLSM) was applied to monitor SLs corneal penetration. The optimum formulation (F5), contains 240 mg Span 60 and 60 mg Tween 60 as EA. F5 exhibited EE% = 59.7 ± 4.2%, PS = 177.6 ± 1.8 nm, PDI = 0.27 ± 0.022 and ZP = -40.6 ± 0.68 mV. Furthermore, only 39.37 ± 0.72% of LF amount was released after 4 h compared to complete release from drug solution. The apparent permeation coefficient was (14.7 × 10-3 cm/h) compared to (9.7 × 10-3 cm/h) for LF solution. Moreover, F5 exhibited 200% and 100% increase in the antibacterial efficacy against Pseudomonas aeruginosa and Staphylococcus aureus respectively.
Collapse
Affiliation(s)
- Omnia Ahmed Agha
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Daqahlia 35516, Egypt
| | - Germeen N.S. Girgis
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Daqahlia 35516, Egypt
| | - Mohamed M.A. El-Sokkary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Daqahlia 35516, Egypt
| | | |
Collapse
|
3
|
Bardill JR, Laughter MR, Stager M, Liechty KW, Krebs MD, Zgheib C. Topical gel-based biomaterials for the treatment of diabetic foot ulcers. Acta Biomater 2022; 138:73-91. [PMID: 34728428 PMCID: PMC8738150 DOI: 10.1016/j.actbio.2021.10.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 01/17/2023]
Abstract
Diabetic foot ulcers (DFUs) are a devastating ailment for many diabetic patients with increasing prevalence and morbidity. The complex pathophysiology of DFU wound environments has made finding effective treatments difficult. Standard wound care treatments have limited efficacy in healing these types of chronic wounds. Topical biomaterial gels have been developed to implement novel treatment approaches to improve therapeutic effects and are advantageous due to their ease of application, tunability, and ability to improve therapeutic release characteristics. Here, we provide an updated, comprehensive review of novel topical biomaterial gels developed for treating chronic DFUs. This review will examine preclinical data for topical gel treatments in diabetic animal models and clinical applications, focusing on gels with protein/peptides, drug, cellular, herbal/antioxidant, and nano/microparticle approaches. STATEMENT OF SIGNIFICANCE: By 2050, 1 in 3 Americans will develop diabetes, and up to 34% of diabetic patients will develop a diabetic foot ulcer (DFU) in their lifetime. Current treatments for DFUs include debridement, infection control, maintaining a moist wound environment, and pressure offloading. Despite these interventions, a large number of DFUs fail to heal and are associated with a cost that exceeds $31 billion annually. Topical biomaterials have been developed to help target specific impairments associated with DFU with the goal to improve healing. A summary of these approaches is needed to help better understand the current state of the research. This review summarizes recent research and advances in topical biomaterials treatments for DFUs.
Collapse
Affiliation(s)
- James R Bardill
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | | | - Michael Stager
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Melissa D Krebs
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
4
|
Effect of the Combination of Levofloxacin with Cationic Carbosilane Dendron and Peptide in the Prevention and Treatment of Staphylococcus aureus Biofilms. Polymers (Basel) 2021; 13:polym13132127. [PMID: 34209475 PMCID: PMC8271537 DOI: 10.3390/polym13132127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Antibiotic resistance and biofilm-related infections, persistent in conventional antimicrobial treatment, are continuously increasing and represent a major health problem worldwide. Therefore, the development of new effective treatments to prevent and treat biofilm-related infections represents a crucial challenge. Unfortunately, the extensive use of antibiotics has led to an increase of resistant bacteria with the subsequent loss of effectivity of commercial antibiotics, mainly due to antibiotic resistance and the ability of some bacteria to form microbial communities in biotic or abiotic surfaces (biofilms). In some cases, these biofilms are resistant to high concentrations of antibiotics that lead to treatment failure and recurrence of the associated infections. In the fight against microbial resistance, the combination of traditional antibiotics with new compounds (combination therapy) is an alternative that is becoming more extensive in the medical field. In this work, we studied the cooperative effects between levofloxacin, an approved antibiotic, and peptides or cationic dendritic molecules, compounds that are emerging as a feasible solution to overcome the problem of microbial resistance caused by pathogenic biofilms. We studied a new therapeutic approach that involves the use of levofloxacin in combination with a cationic carbosilane dendron, called MalG2(SNHMe2Cl)4, or a synthetic cell-penetrating peptide, called gH625, conjugated to the aforementioned dendron. To carry out the study, we used two combinations (1) levofloxacin/dendron and (2) levofloxacin/dendron-peptide nanoconjugate. The results showed the synergistic effect of the combination therapy to treat Staphylococcus aureus biofilms. In addition, we generated a fluorescein labeled peptide that allowed us to observe the conjugate (dendron-peptide) localization throughout the bacterial biofilm by confocal laser scanning microscopy.
Collapse
|
5
|
Swami P, Sharma A, Anand S, Gupta S. DEPIS: A combined dielectrophoresis and impedance spectroscopy platform for rapid cell viability and antimicrobial susceptibility analysis. Biosens Bioelectron 2021; 182:113190. [PMID: 33866070 DOI: 10.1016/j.bios.2021.113190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Antimicrobial resistance (AMR) is caused by inappropriate or excessive antibiotic consumption. Early diagnosis of bacterial infections can greatly curb empirical treatment and thus AMR. Current diagnostic procedures are time-consuming as they rely on gene amplification and cell culture techniques that are inherently limited by the doubling rate of the involved species. Further, biochemical methods for species identification and antibiotic susceptibility testing for drug/dose effectiveness take several days and are non-scalable. We report a real-time, label-free approach called DEPIS that combines dielectrophoresis (DEP) for bacterial enrichment and impedance spectroscopy (IS) for cell viability analysis under 60 min. Target bacteria are captured on interdigitated electrodes using DEP (30 min) and their antibiotic-induced stress response is measured using IS (another 30 min). This principle is used to generate minimum bactericidal concentration (MBC) plots by measuring impedance change due to ionic release by dying bacteria in a low conductivity buffer. The results are rapid since they rely on cell death rather than cell growth which is an intrinsically slower process. The results are also highly specific and work across all bactericidal antibiotics studied, irrespective of their cellular target or drug action mechanism. More importantly, preliminary results with clinical isolates show that methicillin-susceptible Staphylococcus aureus (MSSA) can easily be differentiated from methicillin-resistant S. aureus (MRSA) under 1 h. This rapid cell analyses approach can aid in faster diagnosis of bacterial infections and benefit the clinical decision-making process for antibiotic treatment, addressing the critical issue of AMR.
Collapse
Affiliation(s)
- Pragya Swami
- Dept. of Chemical Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Ayush Sharma
- Dept. of Chemical Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Satyam Anand
- Dept. of Chemical Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Shalini Gupta
- Dept. of Chemical Engineering, Indian Institute of Technology, Delhi, 110016, India.
| |
Collapse
|
6
|
Antimicrobial Activity and Metabolite Analysis of Ganoderma boninense Fruiting Body. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.2.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Gelin M, Paoletti J, Nahori MA, Huteau V, Leseigneur C, Jouvion G, Dugué L, Clément D, Pons JL, Assairi L, Pochet S, Labesse G, Dussurget O. From Substrate to Fragments to Inhibitor Active In Vivo against Staphylococcus aureus. ACS Infect Dis 2020; 6:422-435. [PMID: 32017533 DOI: 10.1021/acsinfecdis.9b00368] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibiotic resistance is a worldwide threat due to the decreasing supply of new antimicrobials. Novel targets and innovative strategies are urgently needed to generate pathbreaking drug compounds. NAD kinase (NADK) is essential for growth in most bacteria, as it supports critical metabolic pathways. Here, we report the discovery of a new class of antibacterials that targets bacterial NADK. We generated a series of small synthetic adenine derivatives to screen those harboring promising substituents in order to guide efficient fragment linking. This led to NKI1, a new lead compound inhibiting NADK that showed in vitro bactericidal activity against Staphylococcus aureus. In a murine model of infection, NKI1 restricted survival of the bacteria, including methicillin-resistant S. aureus. Collectively, these findings identify bacterial NADK as a potential drug target and NKI1 as a lead compound in the treatment of staphylococcal infections.
Collapse
Affiliation(s)
- Muriel Gelin
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université Montpellier, 29 route de Navacelles, 34090 Montpellier, France
| | - Julie Paoletti
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS UMR3523, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Marie-Anne Nahori
- Unité des Toxines Bactériennes, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Valérie Huteau
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS UMR3523, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Clarisse Leseigneur
- Unité de Recherche Yersinia, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 35 rue Hélène Brion, 75013 Paris, France
| | - Grégory Jouvion
- Unité de Neuropathologie Expérimentale, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
- Sorbonne Université, INSERM UMR S933, Unité de Génétique Médicale, Hôpital Armand Trousseau, APHP, 26 Avenue du Dr Arnold Netter, 75012 Paris, France
| | - Laurence Dugué
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS UMR3523, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - David Clément
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS UMR3523, 25-28 rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 35 rue Hélène Brion, 75013 Paris, France
| | - Jean-Luc Pons
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université Montpellier, 29 route de Navacelles, 34090 Montpellier, France
| | - Liliane Assairi
- INSERM U759, Institut Curie, Centre Universitaire Paris Sud, 91405 Orsay, France
| | - Sylvie Pochet
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS UMR3523, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Gilles Labesse
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université Montpellier, 29 route de Navacelles, 34090 Montpellier, France
| | - Olivier Dussurget
- Unité de Recherche Yersinia, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 35 rue Hélène Brion, 75013 Paris, France
| |
Collapse
|
8
|
Tonoyan L, Fleming GTA, Friel R, O'Flaherty V. Continuous culture of Escherichia coli, under selective pressure by a novel antimicrobial complex, does not result in development of resistance. Sci Rep 2019; 9:2401. [PMID: 30787338 PMCID: PMC6382887 DOI: 10.1038/s41598-019-38925-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/10/2019] [Indexed: 01/06/2023] Open
Abstract
We attempted to generate de novo resistance to a newly described biocidal complex, ITC (iodo-thiocyanate complex), and to levofloxacin (LVX) in Escherichia coli ATCC 25922, by means of selective chemostat culture. We measured resistance by determining the minimum inhibitory concentrations (MICs) for these agents. E. coli underwent 20-day parallel adaptive evolution routes under no antimicrobial selection, and gradually increasing ITC and LVX selection pressure. Long-term exposure of E. coli to ITC did not induce resistance to ITC, or cross-resistance to LVX. No distinct mutational pattern was evidenced from whole-genome sequence (WGS)-based comparisons of ITC-challenged and unchallenged bacterial populations. Moreover, the exposed E. coli population could not survive a 2 × MIC challenge of ITC. By contrast, resistance to LVX was rapidly induced (on day 1 the MIC had increased 16-fold), selected for (by day 14 the MIC had increased 64-fold) and enriched with a highly characteristic genome mutational pattern. WGS of this evolving population revealed that the majority of mutations appeared in the genes of LVX target proteins (GyrA, ParC, ParE) and drug influx (OmpF). This study suggests that the usage of ITC may not trigger the emergence of facile resistance or cross-resistance, in contrast to common antibiotics.
Collapse
Affiliation(s)
- Lilit Tonoyan
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| | - Gerard T A Fleming
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Ruairi Friel
- Westway Health, Unit 120, Business Innovation Centre, National University of Ireland Galway, Galway, Ireland
| | - Vincent O'Flaherty
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
9
|
Ding Y, Li W, Correia A, Yang Y, Zheng K, Liu D, Schubert DW, Boccaccini AR, Santos HA, Roether JA. Electrospun Polyhydroxybutyrate/Poly(ε-caprolactone)/Sol-Gel-Derived Silica Hybrid Scaffolds with Drug Releasing Function for Bone Tissue Engineering Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14540-14548. [PMID: 29624366 PMCID: PMC6108537 DOI: 10.1021/acsami.8b02656] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/06/2018] [Indexed: 05/23/2023]
Abstract
Electrospun hybrid scaffolds are an effective platform to deliver drugs site specifically for the prevention and treatment of diseases in addition to promote tissue regeneration because of the flexibility to load drugs therein. In the present study, electrospun hybrid scaffolds containing antibiotics were developed to support cellular activities and eliminate potential postoperative inflammation and infection. As a model drug, levofloxacin (LFX) was successfully incorporated into pure polyhydroxybutyrate/poly(ε-caprolactone) (PHB/PCL) scaffolds and PHB/PCL/sol-gel-derived silica (SGS) scaffolds. The influence of LFX on the morphology, mechanical performance, chemical structure, drug release profile, and antibacterial effect of the scaffolds was thoroughly and comparatively investigated. MG-63 osteoblast-like cell cultivation on both scaffolds certified that LFX inclusion did not impair the biocompatibility. In addition to the favorable cellular proliferation and differentiation, scaffolds containing both LFX and SGS displayed highly increased mineralization content. Therefore, the present multifunctional hybrid scaffolds are promising in tissue engineering applications.
Collapse
Affiliation(s)
- Yaping Ding
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland
- Institute of Polymer Materials, University of Erlangen−Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Wei Li
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland
| | - Alexandra Correia
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland
| | - Yuyun Yang
- Institute of Biomaterials, University of
Erlangen−Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
- Institute of Corrosion
Science and Surface Technology, Harbin Engineering
University, Nantong Street 145, 150001 Harbin, China
| | - Kai Zheng
- Institute of Biomaterials, University of
Erlangen−Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | - Dongfei Liu
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland
| | - Dirk W. Schubert
- Institute of Polymer Materials, University of Erlangen−Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of
Erlangen−Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | - Hélder A. Santos
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland
| | - Judith A. Roether
- Institute of Polymer Materials, University of Erlangen−Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
| |
Collapse
|